| 1 | initial version |
As suggested above, a graphical representation gives an easy intuition :
plot([(I^x).abs(), (I^x).maxima_methods().arg()], (x, -3, 3), legend_label=["Modulus", "Argument"])

To understand the result, try :
sage: var("a, b")
(a, b)
sage: E0=log(a^b)==log(a^b).log_expand() ; E0
log(a^b) == b*log(a)
sage: E1 =E0.subs([a==I, b==x]) ; E1
log(I^x) == 1/2*I*pi*x
sage: E2 = E1.operator()(*map(exp, E1.operands())) ; E2
I^x == e^(1/2*I*pi*x)
The latter may be easier to grasp in a different form :
sage: E2.rhs().demoivre(force=True)
cos(1/2*pi*x) + I*sin(1/2*pi*x)
Exercise for the (advanced) reader : try and understand :
complex_plot(I^x, (-1, 1), (-1, 1))
![Complex plot of $e^iz}$
Hint : look up the definitions of exp and trig functions for complexes...
HTH,
| 2 | No.2 Revision |
As suggested above, a graphical representation gives an easy intuition :
plot([(I^x).abs(), (I^x).maxima_methods().arg()], (x, -3, 3), legend_label=["Modulus", "Argument"])

To understand the result, try :
sage: var("a, b")
(a, b)
sage: E0=log(a^b)==log(a^b).log_expand() ; E0
log(a^b) == b*log(a)
sage: E1 =E0.subs([a==I, b==x]) ; E1
log(I^x) == 1/2*I*pi*x
sage: E2 = E1.operator()(*map(exp, E1.operands())) ; E2
I^x == e^(1/2*I*pi*x)
The latter may be easier to grasp in a different form :
sage: E2.rhs().demoivre(force=True)
cos(1/2*pi*x) + I*sin(1/2*pi*x)
Exercise for the (advanced) reader : try and understand :
complex_plot(I^x, (-1, 1), (-1, 1))
![Complex plot of $e^iz}$
Hint : look up the definitions of exp and trig functions for complexes...
HTH,
| 3 | No.3 Revision |
As suggested above, a graphical representation gives an easy intuition :
plot([(I^x).abs(), (I^x).maxima_methods().arg()], (x, -3, 3), legend_label=["Modulus", "Argument"])

To understand the result, try :
sage: var("a, b")
(a, b)
sage: E0=log(a^b)==log(a^b).log_expand() ; E0
log(a^b) == b*log(a)
sage: E1 =E0.subs([a==I, b==x]) ; E1
log(I^x) == 1/2*I*pi*x
sage: E2 = E1.operator()(*map(exp, E1.operands())) ; E2
I^x == e^(1/2*I*pi*x)
The latter may be easier to grasp in a different form :
sage: E2.rhs().demoivre(force=True)
cos(1/2*pi*x) + I*sin(1/2*pi*x)
Exercise for the (advanced) reader : try and understand :
complex_plot(I^x, (-1, 1), (-1, 1))
(-3, 3), (-3, 3))
![Complex plot of $e^iz}$
Hint : look up the definitions of exp and trig functions for complexes...
EDIT : The complex_plot is displayed in the editor, but does not appear in the finalized answer. Try it on your machine or Sagecell
HTH,
| 4 | No.4 Revision |
As suggested above, a graphical representation gives an easy intuition :
plot([(I^x).abs(), (I^x).maxima_methods().arg()], (x, -3, 3), legend_label=["Modulus", "Argument"])

To understand the result, try :
sage: var("a, b")
(a, b)
sage: E0=log(a^b)==log(a^b).log_expand() ; E0
log(a^b) == b*log(a)
sage: E1 =E0.subs([a==I, b==x]) ; E1
log(I^x) == 1/2*I*pi*x
sage: E2 = E1.operator()(*map(exp, E1.operands())) ; E2
I^x == e^(1/2*I*pi*x)
The latter may be easier to grasp in a different form :
sage: E2.rhs().demoivre(force=True)
cos(1/2*pi*x) + I*sin(1/2*pi*x)
Exercise for the (advanced) reader : try and understand :
complex_plot(I^x, (-3, 3), (-3, 3))

Hint : look up the definitions of exp and trig functions for complexes...
EDIT : The complex_plot is displayed in the editor, but does not appear in the finalized answer. Try it on your machine or Sagecell
HTH,
| 5 | No.5 Revision |
As suggested above, a graphical representation gives an easy intuition :
plot([(I^x).abs(), (I^x).maxima_methods().arg()], (x, -3, 3), legend_label=["Modulus", "Argument"])

To understand the result, try :
sage: var("a, b")
(a, b)
sage: E0=log(a^b)==log(a^b).log_expand() ; E0
log(a^b) == b*log(a)
sage: E1 =E0.subs([a==I, b==x]) ; E1
log(I^x) == 1/2*I*pi*x
sage: E2 = E1.operator()(*map(exp, E1.operands())) ; E2
I^x == e^(1/2*I*pi*x)
The latter may be easier to grasp in a different form :
sage: E2.rhs().demoivre(force=True)
cos(1/2*pi*x) + I*sin(1/2*pi*x)
Exercise for the (advanced) reader : try and understand :
complex_plot(I^x, (-3, 3), (-3, 3))

Hint : look up the definitions of exp and trig functions for complexes...
EDIT : The complex_plot is displayed in the editor, but does not appear in the finalized answer. Try it on your machine or Sagecell
HTH,
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.