1 | initial version |

To find just one solution you can use pose the problem as MILP and specify the objective as `None`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

2 | No.2 Revision |

~~use ~~pose the problem as MILP and specify the objective as `None`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

3 | No.3 Revision |

To find just one solution you can pose the problem as MILP ~~and specify the objective as ~~with

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html~~None~~.set_objective(None)

4 | No.4 Revision |

To find just one solution you can pose the problem as MILP with `.set_objective(None)`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

To deal with strict inequalities, one can multiply them by LCM of the denominators (turning both sides in integers) and add 1 to the smaller side to turn the inequality into non-strict. For example,

```
1/9*x2+2/9*x3+2/9*x4+2/9*x5+1/9*x6+1/9*x7 > 1/4*x2+1/4*x3+1/4*x4+1/4*x5
```

is equivalent to

```
4*(x2+2*x3+2*x4+2*x5+x6+x7) >= 9*(x2+x3+x4+x5) + 1.
```

5 | No.5 Revision |

To find just one solution you can pose the problem as MILP with `.set_objective(None)`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

To deal with strict inequalities, one can multiply them by LCM of the denominators (turning both sides ~~in ~~into integers) and add 1 to the smaller side to turn the inequality into non-strict. For example,

```
1/9*x2+2/9*x3+2/9*x4+2/9*x5+1/9*x6+1/9*x7 > 1/4*x2+1/4*x3+1/4*x4+1/4*x5
```

is equivalent to

```
4*(x2+2*x3+2*x4+2*x5+x6+x7) >= 9*(x2+x3+x4+x5) + 1.
```

6 | No.6 Revision |

To find just one solution you can pose the problem as MILP with `.set_objective(None)`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

To deal with strict inequalities, one can multiply them by LCM of the denominators (turning both sides into integers) and add 1 to the smaller side to turn the inequality into non-strict. For example,

```
1/9*x2+2/9*x3+2/9*x4+2/9*x5+1/9*x6+1/9*x7 > 1/4*x2+1/4*x3+1/4*x4+1/4*x5
```

is equivalent to

```
4*(x2+2*x3+2*x4+2*x5+x6+x7) >= 9*(x2+x3+x4+x5) + 1.
```

As for solving in rational numbers, this can be done like this:

```
A = Matrix(QQ, [ [ 1/10, 1/10, -1/20, -1/20, -1/20, 1/10, -3/20 ], [ 0, -4/21, -1/21, -1/21, 1/7, 0, 1/7 ], [ -3/88, 5/88, 1/44, 5/88, -3/88, -3/88, -3/88 ], [ 1/13, -3/65, 2/65, -3/65, -3/65, 1/13, -3/65 ],
[ -5/36, -1/36, -1/36, -1/36, 1/9, 0, 1/9 ], [ 1/6, 1/6, -1/6, 1/6, 0, 0, -1/3 ], [ 0, -2/3, 1/3, 0, 0, 0, 1/3 ], [ -1/2, 1/2, 0, 0, 0, 0, 0 ],
[ 0, 0, -1/12, -1/12, -1/12, 1/4, 0 ], [ 0, -5/36, -1/36, -1/36, -1/36, 1/9, 1/9 ], [ 1/13, 1/91, -5/91, -5/91, 1/91, 1/13, -6/91 ], [ 1/15, -1/30, -1/15, 1/30, -1/30, 1/15, -1/30 ],
[ -3/208, 7/208, 1/52, 7/208, -3/104, -3/208, -3/104 ], [ 1/153, -7/153, 2/153, -7/153, 1/153, 1/17, 1/153 ], [ 1/11, -3/44, 1/44, -3/44, 1/11, 0, -3/44 ], [ 1/7, -1/21, -1/21, 1/7, 0, 0, -4/21 ],
[ 1/4, 1/4, 1/4, 0, 0, 0, -3/4 ], [ 0, 0, 0, -1/6, -1/6, 1/3, 0 ], [ 0, 0, -1/6, -1/6, 1/3, 0, 0 ], [ 0, -1/56, -1/28, 3/28, -1/56, -1/56, -1/56 ],
[ -1/132, -1/66, 3/44, -1/66, -1/66, -1/132, -1/132 ], [ -3/56, 1/56, -1/28, -1/28, 1/56, 1/14, 1/56 ], [ 1/10, 0, -1/10, 0, 1/10, 0, -1/10 ], [ -1/132, -1/66, -1/44, -1/66, -1/132, 1/12, -1/66 ],
[ -1/24, 1/12, 1/12, -1/24, -1/24, 0, -1/24 ], [ -1/20, -1/20, -1/20, 1/5, 0, 0, -1/20 ], [ 0, 0, 0, 0, -1/2, 1/2, 0 ], [ 0, 0, 0, -1/2, 1/2, 0, 0 ],
[ 0, 0, -1/2, 1/2, 0, 0, 0 ], [ 0, -1/42, 5/42, -1/42, -1/42, -1/42, -1/42 ], [ -6/55, -1/55, -1/55, -1/55, -1/55, 1/11, 1/11 ], [ 1/8, 1/8, -1/12, -1/12, 1/8, 0, -5/24 ],
[ 0, -3/10, -1/10, 1/5, 0, 0, 1/5 ], [ -2/63, 5/63, 5/63, -2/63, -2/63, -2/63, -2/63 ], [ -1/30, -1/30, -1/30, -1/30, 1/6, 0, -1/30 ], [ -1/42, -1/42, -1/42, -1/42, -1/42, 1/7, -1/42 ] ])
#print(A)
eps = 1e-6
mylp = MixedIntegerLinearProgram( solver='GLPK' )
mylp.set_objective( None )
x = mylp.new_variable()
for r in A.rows():
mylp.add_constraint( sum(r[i]*x[i] for i in range(len(r))) >= eps )
try:
mylp.solve()
print(mylp.get_values(x))
except MIPSolverException:
print('No solution')
```

Here we introduced a small positive gap `eps`

to turn strict inequalities into non-strict. However, we get no solution even if further decrease `eps`

. This suggests that the original problem has no solution. To verify it we can construct the LP problem for `eps = 0`

as above and check the volume of the corresponding polyhedron:

```
mylp.polyhedron().volume()
```

Since the volume is zero, it means is has no internal points and thus the problem has no solutions.

7 | No.7 Revision |

`.set_objective(None)`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

To deal with strict inequalities, one can multiply them by LCM of the denominators (turning both sides into integers) and add 1 to the smaller side to turn the inequality into non-strict. For example,

```
1/9*x2+2/9*x3+2/9*x4+2/9*x5+1/9*x6+1/9*x7 > 1/4*x2+1/4*x3+1/4*x4+1/4*x5
```

is equivalent to

```
4*(x2+2*x3+2*x4+2*x5+x6+x7) >= 9*(x2+x3+x4+x5) + 1.
```

As for solving in rational numbers, this can be done like this:

```
A = Matrix(QQ, [ [ 1/10, 1/10, -1/20, -1/20, -1/20, 1/10, -3/20 ], [ 0, -4/21, -1/21, -1/21, 1/7, 0, 1/7 ], [ -3/88, 5/88, 1/44, 5/88, -3/88, -3/88, -3/88 ], [ 1/13, -3/65, 2/65, -3/65, -3/65, 1/13, -3/65 ],
[ -5/36, -1/36, -1/36, -1/36, 1/9, 0, 1/9 ], [ 1/6, 1/6, -1/6, 1/6, 0, 0, -1/3 ], [ 0, -2/3, 1/3, 0, 0, 0, 1/3 ], [ -1/2, 1/2, 0, 0, 0, 0, 0 ],
[ 0, 0, -1/12, -1/12, -1/12, 1/4, 0 ], [ 0, -5/36, -1/36, -1/36, -1/36, 1/9, 1/9 ], [ 1/13, 1/91, -5/91, -5/91, 1/91, 1/13, -6/91 ], [ 1/15, -1/30, -1/15, 1/30, -1/30, 1/15, -1/30 ],
[ -3/208, 7/208, 1/52, 7/208, -3/104, -3/208, -3/104 ], [ 1/153, -7/153, 2/153, -7/153, 1/153, 1/17, 1/153 ], [ 1/11, -3/44, 1/44, -3/44, 1/11, 0, -3/44 ], [ 1/7, -1/21, -1/21, 1/7, 0, 0, -4/21 ],
[ 1/4, 1/4, 1/4, 0, 0, 0, -3/4 ], [ 0, 0, 0, -1/6, -1/6, 1/3, 0 ], [ 0, 0, -1/6, -1/6, 1/3, 0, 0 ], [ 0, -1/56, -1/28, 3/28, -1/56, -1/56, -1/56 ],
[ -1/132, -1/66, 3/44, -1/66, -1/66, -1/132, -1/132 ], [ -3/56, 1/56, -1/28, -1/28, 1/56, 1/14, 1/56 ], [ 1/10, 0, -1/10, 0, 1/10, 0, -1/10 ], [ -1/132, -1/66, -1/44, -1/66, -1/132, 1/12, -1/66 ],
[ -1/24, 1/12, 1/12, -1/24, -1/24, 0, -1/24 ], [ -1/20, -1/20, -1/20, 1/5, 0, 0, -1/20 ], [ 0, 0, 0, 0, -1/2, 1/2, 0 ], [ 0, 0, 0, -1/2, 1/2, 0, 0 ],
[ 0, 0, -1/2, 1/2, 0, 0, 0 ], [ 0, -1/42, 5/42, -1/42, -1/42, -1/42, -1/42 ], [ -6/55, -1/55, -1/55, -1/55, -1/55, 1/11, 1/11 ], [ 1/8, 1/8, -1/12, -1/12, 1/8, 0, -5/24 ],
[ 0, -3/10, -1/10, 1/5, 0, 0, 1/5 ], [ -2/63, 5/63, 5/63, -2/63, -2/63, -2/63, -2/63 ], [ -1/30, -1/30, -1/30, -1/30, 1/6, 0, -1/30 ], [ -1/42, -1/42, -1/42, -1/42, -1/42, 1/7, -1/42 ] ])
#print(A)
eps = 1e-6
mylp = MixedIntegerLinearProgram( solver='GLPK' )
mylp.set_objective( None )
x = mylp.new_variable()
for r in A.rows():
mylp.add_constraint( sum(r[i]*x[i] for i in range(len(r))) >= eps )
try:
mylp.solve()
print(mylp.get_values(x))
except MIPSolverException:
print('No solution')
```

Here we introduced a small positive gap `eps`

to turn strict inequalities into non-strict. However, we get no solution even if further decrease `eps`

. This suggests that the original problem has no solution. To verify it we can construct the LP problem for `eps = 0`

as above and check the volume of the corresponding polyhedron:

```
mylp.polyhedron().volume()
```

Since the volume is zero, ~~it means is ~~the polyhedron defined by $Ax\geq 0$ has no internal points and thus the ~~problem ~~inquality $Ax>0$ has no solutions.

8 | No.8 Revision |

`.set_objective(None)`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

To deal with strict inequalities, one can multiply them by LCM of the denominators (turning both sides into integers) and add 1 to the smaller side to turn the inequality into non-strict. For example,

```
1/9*x2+2/9*x3+2/9*x4+2/9*x5+1/9*x6+1/9*x7 > 1/4*x2+1/4*x3+1/4*x4+1/4*x5
```

is equivalent to

```
4*(x2+2*x3+2*x4+2*x5+x6+x7) >= 9*(x2+x3+x4+x5) + 1.
```

As for solving in rational numbers, this can be done like this:

```
A = Matrix(QQ, [ [ 1/10, 1/10, -1/20, -1/20, -1/20, 1/10, -3/20 ], [ 0, -4/21, -1/21, -1/21, 1/7, 0, 1/7 ], [ -3/88, 5/88, 1/44, 5/88, -3/88, -3/88, -3/88 ], [ 1/13, -3/65, 2/65, -3/65, -3/65, 1/13, -3/65 ],
[ -5/36, -1/36, -1/36, -1/36, 1/9, 0, 1/9 ], [ 1/6, 1/6, -1/6, 1/6, 0, 0, -1/3 ], [ 0, -2/3, 1/3, 0, 0, 0, 1/3 ], [ -1/2, 1/2, 0, 0, 0, 0, 0 ],
[ 0, 0, -1/12, -1/12, -1/12, 1/4, 0 ], [ 0, -5/36, -1/36, -1/36, -1/36, 1/9, 1/9 ], [ 1/13, 1/91, -5/91, -5/91, 1/91, 1/13, -6/91 ], [ 1/15, -1/30, -1/15, 1/30, -1/30, 1/15, -1/30 ],
[ -3/208, 7/208, 1/52, 7/208, -3/104, -3/208, -3/104 ], [ 1/153, -7/153, 2/153, -7/153, 1/153, 1/17, 1/153 ], [ 1/11, -3/44, 1/44, -3/44, 1/11, 0, -3/44 ], [ 1/7, -1/21, -1/21, 1/7, 0, 0, -4/21 ],
[ 1/4, 1/4, 1/4, 0, 0, 0, -3/4 ], [ 0, 0, 0, -1/6, -1/6, 1/3, 0 ], [ 0, 0, -1/6, -1/6, 1/3, 0, 0 ], [ 0, -1/56, -1/28, 3/28, -1/56, -1/56, -1/56 ],
[ -1/132, -1/66, 3/44, -1/66, -1/66, -1/132, -1/132 ], [ -3/56, 1/56, -1/28, -1/28, 1/56, 1/14, 1/56 ], [ 1/10, 0, -1/10, 0, 1/10, 0, -1/10 ], [ -1/132, -1/66, -1/44, -1/66, -1/132, 1/12, -1/66 ],
[ -1/24, 1/12, 1/12, -1/24, -1/24, 0, -1/24 ], [ -1/20, -1/20, -1/20, 1/5, 0, 0, -1/20 ], [ 0, 0, 0, 0, -1/2, 1/2, 0 ], [ 0, 0, 0, -1/2, 1/2, 0, 0 ],
[ 0, 0, -1/2, 1/2, 0, 0, 0 ], [ 0, -1/42, 5/42, -1/42, -1/42, -1/42, -1/42 ], [ -6/55, -1/55, -1/55, -1/55, -1/55, 1/11, 1/11 ], [ 1/8, 1/8, -1/12, -1/12, 1/8, 0, -5/24 ],
[ 0, -3/10, -1/10, 1/5, 0, 0, 1/5 ], [ -2/63, 5/63, 5/63, -2/63, -2/63, -2/63, -2/63 ], [ -1/30, -1/30, -1/30, -1/30, 1/6, 0, -1/30 ], [ -1/42, -1/42, -1/42, -1/42, -1/42, 1/7, -1/42 ] ])
#print(A)
eps = 1e-6
mylp = MixedIntegerLinearProgram( solver='GLPK' )
mylp.set_objective( None )
x = mylp.new_variable()
for r in A.rows():
mylp.add_constraint( sum(r[i]*x[i] for i in range(len(r))) >= eps )
try:
mylp.solve()
```~~print(mylp.get_values(x))
~~print('Solution:', mylp.get_values(x))
except MIPSolverException:
print('No solution')

Here we introduced a small positive gap `eps`

to turn strict inequalities into non-strict. However, we get no solution even if further decrease `eps`

. This suggests that the original problem has no solution. To verify it we can construct the LP problem for `eps = 0`

as above and check the volume of the corresponding polyhedron:

```
mylp.polyhedron().volume()
```

Since the volume is zero, the polyhedron defined by $Ax\geq 0$ has no internal points and thus the inquality $Ax>0$ has no solutions.

9 | No.9 Revision |

`.set_objective(None)`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

```
1/9*x2+2/9*x3+2/9*x4+2/9*x5+1/9*x6+1/9*x7 > 1/4*x2+1/4*x3+1/4*x4+1/4*x5
```

is equivalent to

```
4*(x2+2*x3+2*x4+2*x5+x6+x7) >= 9*(x2+x3+x4+x5) + 1.
```

As for solving in rational numbers, this can be done like this:

```
from sage.numerical.mip import MIPSolverException
A = Matrix(QQ, [ [ 1/10, 1/10, -1/20, -1/20, -1/20, 1/10, -3/20 ], [ 0, -4/21, -1/21, -1/21, 1/7, 0, 1/7 ], [ -3/88, 5/88, 1/44, 5/88, -3/88, -3/88, -3/88 ], [ 1/13, -3/65, 2/65, -3/65, -3/65, 1/13, -3/65 ],
[ -5/36, -1/36, -1/36, -1/36, 1/9, 0, 1/9 ], [ 1/6, 1/6, -1/6, 1/6, 0, 0, -1/3 ], [ 0, -2/3, 1/3, 0, 0, 0, 1/3 ], [ -1/2, 1/2, 0, 0, 0, 0, 0 ],
[ 0, 0, -1/12, -1/12, -1/12, 1/4, 0 ], [ 0, -5/36, -1/36, -1/36, -1/36, 1/9, 1/9 ], [ 1/13, 1/91, -5/91, -5/91, 1/91, 1/13, -6/91 ], [ 1/15, -1/30, -1/15, 1/30, -1/30, 1/15, -1/30 ],
[ -3/208, 7/208, 1/52, 7/208, -3/104, -3/208, -3/104 ], [ 1/153, -7/153, 2/153, -7/153, 1/153, 1/17, 1/153 ], [ 1/11, -3/44, 1/44, -3/44, 1/11, 0, -3/44 ], [ 1/7, -1/21, -1/21, 1/7, 0, 0, -4/21 ],
[ 1/4, 1/4, 1/4, 0, 0, 0, -3/4 ], [ 0, 0, 0, -1/6, -1/6, 1/3, 0 ], [ 0, 0, -1/6, -1/6, 1/3, 0, 0 ], [ 0, -1/56, -1/28, 3/28, -1/56, -1/56, -1/56 ],
[ -1/132, -1/66, 3/44, -1/66, -1/66, -1/132, -1/132 ], [ -3/56, 1/56, -1/28, -1/28, 1/56, 1/14, 1/56 ], [ 1/10, 0, -1/10, 0, 1/10, 0, -1/10 ], [ -1/132, -1/66, -1/44, -1/66, -1/132, 1/12, -1/66 ],
[ -1/24, 1/12, 1/12, -1/24, -1/24, 0, -1/24 ], [ -1/20, -1/20, -1/20, 1/5, 0, 0, -1/20 ], [ 0, 0, 0, 0, -1/2, 1/2, 0 ], [ 0, 0, 0, -1/2, 1/2, 0, 0 ],
[ 0, 0, -1/2, 1/2, 0, 0, 0 ], [ 0, -1/42, 5/42, -1/42, -1/42, -1/42, -1/42 ], [ -6/55, -1/55, -1/55, -1/55, -1/55, 1/11, 1/11 ], [ 1/8, 1/8, -1/12, -1/12, 1/8, 0, -5/24 ],
[ 0, -3/10, -1/10, 1/5, 0, 0, 1/5 ], [ -2/63, 5/63, 5/63, -2/63, -2/63, -2/63, -2/63 ], [ -1/30, -1/30, -1/30, -1/30, 1/6, 0, -1/30 ], [ -1/42, -1/42, -1/42, -1/42, -1/42, 1/7, -1/42 ] ])
#print(A)
eps = 1e-6
mylp = MixedIntegerLinearProgram( solver='GLPK' )
mylp.set_objective( None )
x = mylp.new_variable()
for r in A.rows():
mylp.add_constraint( sum(r[i]*x[i] for i in range(len(r))) >= eps )
try:
mylp.solve()
print('Solution:', mylp.get_values(x))
except MIPSolverException:
print('No solution')
```

`eps`

to turn strict inequalities into non-strict. However, we get no solution even if further decrease `eps`

. This suggests that the original problem has no solution. To verify it we can construct the LP problem for `eps = 0`

as above and check the volume of the corresponding polyhedron:

```
mylp.polyhedron().volume()
```

Since the volume is zero, the polyhedron defined by $Ax\geq 0$ has no internal points and thus the inquality $Ax>0$ has no solutions.

10 | No.10 Revision |

`.set_objective(None)`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

```
1/9*x2+2/9*x3+2/9*x4+2/9*x5+1/9*x6+1/9*x7 > 1/4*x2+1/4*x3+1/4*x4+1/4*x5
```

is equivalent to

```
4*(x2+2*x3+2*x4+2*x5+x6+x7) >= 9*(x2+x3+x4+x5) + 1.
```

As for solving in rational numbers, this can be done like this:

```
from sage.numerical.mip import MIPSolverException
A = Matrix(QQ, [ [ 1/10, 1/10, -1/20, -1/20, -1/20, 1/10, -3/20 ], [ 0, -4/21, -1/21, -1/21, 1/7, 0, 1/7 ], [ -3/88, 5/88, 1/44, 5/88, -3/88, -3/88, -3/88 ], [ 1/13, -3/65, 2/65, -3/65, -3/65, 1/13, -3/65 ],
[ -5/36, -1/36, -1/36, -1/36, 1/9, 0, 1/9 ], [ 1/6, 1/6, -1/6, 1/6, 0, 0, -1/3 ], [ 0, -2/3, 1/3, 0, 0, 0, 1/3 ], [ -1/2, 1/2, 0, 0, 0, 0, 0 ],
[ 0, 0, -1/12, -1/12, -1/12, 1/4, 0 ], [ 0, -5/36, -1/36, -1/36, -1/36, 1/9, 1/9 ], [ 1/13, 1/91, -5/91, -5/91, 1/91, 1/13, -6/91 ], [ 1/15, -1/30, -1/15, 1/30, -1/30, 1/15, -1/30 ],
[ -3/208, 7/208, 1/52, 7/208, -3/104, -3/208, -3/104 ], [ 1/153, -7/153, 2/153, -7/153, 1/153, 1/17, 1/153 ], [ 1/11, -3/44, 1/44, -3/44, 1/11, 0, -3/44 ], [ 1/7, -1/21, -1/21, 1/7, 0, 0, -4/21 ],
[ 1/4, 1/4, 1/4, 0, 0, 0, -3/4 ], [ 0, 0, 0, -1/6, -1/6, 1/3, 0 ], [ 0, 0, -1/6, -1/6, 1/3, 0, 0 ], [ 0, -1/56, -1/28, 3/28, -1/56, -1/56, -1/56 ],
[ -1/132, -1/66, 3/44, -1/66, -1/66, -1/132, -1/132 ], [ -3/56, 1/56, -1/28, -1/28, 1/56, 1/14, 1/56 ], [ 1/10, 0, -1/10, 0, 1/10, 0, -1/10 ], [ -1/132, -1/66, -1/44, -1/66, -1/132, 1/12, -1/66 ],
[ -1/24, 1/12, 1/12, -1/24, -1/24, 0, -1/24 ], [ -1/20, -1/20, -1/20, 1/5, 0, 0, -1/20 ], [ 0, 0, 0, 0, -1/2, 1/2, 0 ], [ 0, 0, 0, -1/2, 1/2, 0, 0 ],
[ 0, 0, -1/2, 1/2, 0, 0, 0 ], [ 0, -1/42, 5/42, -1/42, -1/42, -1/42, -1/42 ], [ -6/55, -1/55, -1/55, -1/55, -1/55, 1/11, 1/11 ], [ 1/8, 1/8, -1/12, -1/12, 1/8, 0, -5/24 ],
[ 0, -3/10, -1/10, 1/5, 0, 0, 1/5 ], [ -2/63, 5/63, 5/63, -2/63, -2/63, -2/63, -2/63 ], [ -1/30, -1/30, -1/30, -1/30, 1/6, 0, -1/30 ], [ -1/42, -1/42, -1/42, -1/42, -1/42, 1/7, -1/42 ] ])
#print(A)
eps = 1e-6
mylp = MixedIntegerLinearProgram(
```~~solver='GLPK' ~~solver='ppl' )
mylp.set_objective( None )
x = mylp.new_variable()
for r in A.rows():
mylp.add_constraint( sum(r[i]*x[i] for i in range(len(r))) >= eps )
try:
mylp.solve()
print('Solution:', mylp.get_values(x))
except MIPSolverException:
print('No solution')

`eps`

to turn strict inequalities into non-strict. However, we get no solution even if further decrease `eps`

. This suggests that the original problem has no solution. To verify it we can construct the LP problem for `eps = 0`

as above and check the volume of the corresponding polyhedron:

~~mylp.polyhedron().volume()
~~mylp.polyhedron().volume(base_ring=QQ)

Since the volume is zero, the polyhedron defined by $Ax\geq 0$ has no internal points and thus the inquality $Ax>0$ has no solutions.

11 | No.11 Revision |

`.set_objective(None)`

. See documentation and examples at https://doc.sagemath.org/html/en/reference/numerical/sage/numerical/mip.html

```
1/9*x2+2/9*x3+2/9*x4+2/9*x5+1/9*x6+1/9*x7 > 1/4*x2+1/4*x3+1/4*x4+1/4*x5
```

is equivalent to

```
4*(x2+2*x3+2*x4+2*x5+x6+x7) >= 9*(x2+x3+x4+x5) + 1.
```

As for solving in rational numbers, this can be done like this:

```
from sage.numerical.mip import MIPSolverException
A = Matrix(QQ, [ [ 1/10, 1/10, -1/20, -1/20, -1/20, 1/10, -3/20 ], [ 0, -4/21, -1/21, -1/21, 1/7, 0, 1/7 ], [ -3/88, 5/88, 1/44, 5/88, -3/88, -3/88, -3/88 ], [ 1/13, -3/65, 2/65, -3/65, -3/65, 1/13, -3/65 ],
[ -5/36, -1/36, -1/36, -1/36, 1/9, 0, 1/9 ], [ 1/6, 1/6, -1/6, 1/6, 0, 0, -1/3 ], [ 0, -2/3, 1/3, 0, 0, 0, 1/3 ], [ -1/2, 1/2, 0, 0, 0, 0, 0 ],
[ 0, 0, -1/12, -1/12, -1/12, 1/4, 0 ], [ 0, -5/36, -1/36, -1/36, -1/36, 1/9, 1/9 ], [ 1/13, 1/91, -5/91, -5/91, 1/91, 1/13, -6/91 ], [ 1/15, -1/30, -1/15, 1/30, -1/30, 1/15, -1/30 ],
[ -3/208, 7/208, 1/52, 7/208, -3/104, -3/208, -3/104 ], [ 1/153, -7/153, 2/153, -7/153, 1/153, 1/17, 1/153 ], [ 1/11, -3/44, 1/44, -3/44, 1/11, 0, -3/44 ], [ 1/7, -1/21, -1/21, 1/7, 0, 0, -4/21 ],
[ 1/4, 1/4, 1/4, 0, 0, 0, -3/4 ], [ 0, 0, 0, -1/6, -1/6, 1/3, 0 ], [ 0, 0, -1/6, -1/6, 1/3, 0, 0 ], [ 0, -1/56, -1/28, 3/28, -1/56, -1/56, -1/56 ],
[ -1/132, -1/66, 3/44, -1/66, -1/66, -1/132, -1/132 ], [ -3/56, 1/56, -1/28, -1/28, 1/56, 1/14, 1/56 ], [ 1/10, 0, -1/10, 0, 1/10, 0, -1/10 ], [ -1/132, -1/66, -1/44, -1/66, -1/132, 1/12, -1/66 ],
[ -1/24, 1/12, 1/12, -1/24, -1/24, 0, -1/24 ], [ -1/20, -1/20, -1/20, 1/5, 0, 0, -1/20 ], [ 0, 0, 0, 0, -1/2, 1/2, 0 ], [ 0, 0, 0, -1/2, 1/2, 0, 0 ],
[ 0, 0, -1/2, 1/2, 0, 0, 0 ], [ 0, -1/42, 5/42, -1/42, -1/42, -1/42, -1/42 ], [ -6/55, -1/55, -1/55, -1/55, -1/55, 1/11, 1/11 ], [ 1/8, 1/8, -1/12, -1/12, 1/8, 0, -5/24 ],
[ 0, -3/10, -1/10, 1/5, 0, 0, 1/5 ], [ -2/63, 5/63, 5/63, -2/63, -2/63, -2/63, -2/63 ], [ -1/30, -1/30, -1/30, -1/30, 1/6, 0, -1/30 ], [ -1/42, -1/42, -1/42, -1/42, -1/42, 1/7, -1/42 ] ])
#print(A)
eps = 1e-6
mylp = MixedIntegerLinearProgram( solver='ppl' )
mylp.set_objective( None )
x = mylp.new_variable()
for r in A.rows():
mylp.add_constraint( sum(r[i]*x[i] for i in range(len(r))) >= eps )
try:
mylp.solve()
print('Solution:', mylp.get_values(x))
except MIPSolverException:
print('No solution')
```

`eps`

to turn strict inequalities into non-strict. However, we get no solution even if further decrease `eps`

. This suggests that the original problem has no solution. To verify it we can construct the LP problem for `eps = 0`

as above and check the volume of the corresponding polyhedron:

~~mylp.polyhedron().volume(base_ring=QQ)
~~mylp.polyhedron(base_ring=QQ).volume()

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.