Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Sage is somewhat recalcitrant to work with power (inluding radix) simplification,for excellent reasons. Similarly, it tends to pull imaginary quantities out of trig/hyperbolic functions (see remark above).

After

var('epsilon t')
y=function('y')(t)
de = diff(y,t,2)+2*epsilon*diff(y,t,1)+y == 0
assume(epsilon<1)
assume(epsilon>-1)
u(t) = desolve(de,y,ivar=t)
var('k_1')
sol=solve(diff(u(t).subs(_K2=0),t).subs(t=0).subs(_K1=k_1)==1,k_1)
sol[0].rhs().simplify_full()
E1=u(t).subs(_K2=0).subs(_K1=sol[0].rhs().simplify_full())
E2=E1.canonicalize_radical()

E1/E2 is

2ϵ+1ϵ1sin(124ϵ2+4t)4ϵ2+4sinh(ϵ+1ϵ1t)

but giac somewhat recklessly can deduce :

sage: (E2/E1)._giac_().simplify()._sage_().factor()
1

HTH,