1 | initial version |

You may try :

```
sage: foo=e^3*x
sage: foo
x*e^3
sage: foo.coefficient(x)
e^3
sage: print("%s%s"%(foo.coefficient(x),x))
e^3x
```

but this is, IMNSHO, chemically pyre (analytical quality) foolishness : you're aiming to something (printing æsthetics) htat has no algorithmic definition.

A ((very) slightly) little less silly :

```
sage: R1.<t>=PolynomialRing(SR)
sage: sum([var("p{}".format(u))*t^u for u in range(5)])
p4*t^4 + p3*t^3 + p2*t^2 + p1*t + p0
```

2 | No.2 Revision |

You may try :

```
sage: foo=e^3*x
sage: foo
x*e^3
sage: foo.coefficient(x)
e^3
sage: print("%s%s"%(foo.coefficient(x),x))
e^3x
```

but this is, IMNSHO, chemically ~~pyre ~~pure (analytical quality) foolishness : you're aiming to something (printing æsthetics) ~~htat ~~that has no algorithmic definition.

A ((very) slightly) little less silly :

```
sage: R1.<t>=PolynomialRing(SR)
sage: sum([var("p{}".format(u))*t^u for u in range(5)])
p4*t^4 + p3*t^3 + p2*t^2 + p1*t + p0
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.