1 | initial version |

To apply a transformation to all coefficients, use `map_coefficients`

.

For example, say we want to add two to each coefficient.

The function $x \mapsto x + 2$ is denoted in Python by `lambda x: x + 2`

.

```
sage: K.<x_00, x_10, x_01, x_11> = QQ []
sage: g = K.random_element()
sage: g
7/18*x_00*x_01 + 51*x_00*x_11 - 126*x_01*x_11 - x_10
sage: g.map_coefficients(lambda x: x + 2)
43/18*x_00*x_01 + 53*x_00*x_11 - 124*x_01*x_11 + x_10
```

In this case, 7/18 became 43/18, 51 became 53, -126 became -124, and -1 became +1.

2 | No.2 Revision |

To apply a ~~transformation ~~map to all ~~coefficients, ~~coefficients of a polynomial, use `map_coefficients`

.

For example, say we want to add two to each coefficient.

The function $x \mapsto x + 2$ is denoted in Python by `lambda x: x + 2`

.

```
sage: K.<x_00, x_10, x_01, x_11> = QQ []
sage: g = K.random_element()
sage: g
7/18*x_00*x_01 + 51*x_00*x_11 - 126*x_01*x_11 - x_10
sage: g.map_coefficients(lambda x: x + 2)
43/18*x_00*x_01 + 53*x_00*x_11 - 124*x_01*x_11 + x_10
```

In this case, 7/18 became 43/18, 51 became 53, -126 became -124, and -1 became +1.

Note that this works around the question.

For this, use string formatting. For instance:

```
sage: i = 0
sage: j = 1
sage: K(f'x_{i}{j}')
x_01
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.