Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

The most literal interpretation is to build the quotient ring (Z/3Z)[x]/(xpx1):

sage: p = 3
sage: A.<x> = PolynomialRing(Zmod(3))
sage: B.<y> = A.quotient(x^p - x - 1)
sage: B.cardinality().factor()
3^3
sage: B.is_field()
True

Since 3 is prime you can also replace Zmod(3) by GF(3).

If xpx1 is irreducible (for example for p=3) then it is a modulus for the field with 3p elements:

sage: C.<z> = GF(3^p, modulus=x^p - x - 1)