Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Possible workarounds:

  • Substitute what you want to be simplified in the original (larger) expression containing the (unspecified) pther factors (not shown in your exemples...), possibly helped by use of wildcard patterns.


sage: reset()
sage: from sage.manifolds.utilities import simplify_chain_real
sage: w0, w1=(SR.wild(u) for u in (0, 1))
sage: p1,p2,p3 = var('p1 p2 p3', domain="positive")
sage: ER = p1*p2*sqrt(p3)*sqrt(p3/p1)*sqrt(p3/p2)/((p1 - p3)*(p2 - p3)*(p3 - 1))
sage: E1, E2=var("E1, E2")
sage: E=E1*(E2+ER)
sage: E.subs(ER==simplify_chain_real(ER))
-(sqrt(p1)*sqrt(p2)*p3^(3/2)/((p1 + p2 + 1)*p3^2 - p3^3 + p1*p2 - ((p1 + 1)*p2 + p1)*p3) - E2)*E1
sage: E.subs(w0*(w1+ER)==w0*(w1+simplify_chain_real(ER)))
-(sqrt(p1)*sqrt(p2)*p3^(3/2)/((p1 + p2 + 1)*p3^2 - p3^3 + p1*p2 - ((p1 + 1)*p2 + p1)*p3) - E2)*E1
  • Specify exactly the subexpression(s) you want simplified via Maxima's part and subspart functions (available via the maxima_methods() objects).

@eric_g: shouldn't simplify_chain_real (and, better, a similarly named method for SR elements) be part of the standard code of SR ?