1 | initial version |

Here is a way:

```
sage: var('a,b,c,x')
sage: sinx = function('sinx',nargs=1)
sage: pol = 3*a*x^(-b)*log(x)*b^2 - 6*a*b*c*sinx(x*b) + 3*a*c^2 + 5
sage: R = PolynomialRing(SR, names='a,c')
sage: f = pol.polynomial(ring=R)
sage: dict(zip(f.monomials(), f.coefficients()))
{1: 5, a: 3*b^2*log(x)/x^b, a*c: -6*b*sinx(b*x), a*c^2: 3}
```

Note the generators of the ring `R`

are not the same as the symbolic variables `a`

and `c`

.

To get the coefficient of `c`

as in your example, you can do:

```
sage: f.monomial_coefficient(R.gen(1))
0
```

Or maybe more conveniently, something like:

```
sage: A,C = R.gens()
sage: f.monomial_coefficient(C)
0
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.