![]() | 1 | initial version |
I beg to differ with the commenters.
Staying at high-school level, your system boils down to a system of three linear equations with nine unknowns. It has therefore a sextuple infinity of solutions. And sage knows that :
A=[]
B=[]
X=[]
for u in (1..3):
X.append(var("x_{}".format(u), latex_name="x_{{{}}}".format(u)))
B.append(var("b_{}".format(u), latex_name="x_{{{}}}".format(u)))
for v in (1..3):
A.append(var("a_{}_{}".format(u,v),
latex_name="a_{{{},{}}}".format(u,v)))
A=matrix(entries=A,nrows=3)
B=vector(B)
X=vector(X)
S=[B[u]==(A*X)[u] for u in range(3)]
Sol=solve(S,[u for u in A.variables()])
Sol
[[a_1_1 == -(r24*x_2 + r21*x_3 - b_1)/x_1, a_1_2 == r24, a_1_3 == r21, a_2_1 == -(r23*x_2 + r22*x_3 - b_2)/x_1, a_2_2 == r23, a_2_3 == r22, a_3_1 == -(r20*x_2 + r19*x_3 - b_3)/x_1, a_3_2 == r20, a_3_3 == r19]]
Or, more clearly, the only solution is:
a1,1=−r24x2+r21x3−x1x1', 'a1,2=r24', 'a1,3=r21', 'a2,1=−r23x2+r22x3−x2x1', 'a2,2=r23', 'a2,3=r22', 'a3,1=−r20x2+r19x3−x3x1', 'a3,2=r20', 'a3,3=r19'
In other words, your solution is a vector space of dimension six. This means that you could pick six of the elements of your and sole for the three last. For example:
solve(S,[a_1_1, a_2_2, a_3_3])
[[a_1_1 == -(a_1_2*x_2 + a_1_3*x_3 - b_1)/x_1, a_2_2 == -(a_2_1*x_1 + a_2_3*x_3 - b_2)/x_2, a_3_3 == -(a_3_1*x_1 + a_3_2*x_2 - b_3)/x_3]]
'a1,1=−a1,2x2+a1,3x3−x1x1', 'a2,2=−a2,1x1+a2,3x3−x2x2', 'a3,3=−a3,1x1+a3,2x2−x3x3'
Sage has other, higher level, methods for solving this kind of linear algebra problems, whose discovery is left to the reader as an exercise ;-).