# Revision history [back]

This bug originates from Maxima: if you evaluate

sum(binomial(1,n),n,0,oo)


then it returns

from sage.calculus.calculus import symbolic_sum
symbolic_sum(binomial(1,n),n,0,oo)


which calls

maxima_calculus.sr_sum(binomial(1,n),n,0,oo)


which returns

args = [binomial(1,n), n, 0, oo]
max_to_sr(maxima_eval([[max_ratsimp],[[max_simplify_sum],([max_sum],[sr_to_max(SR(a)) for a in args])]]))


Indeed we can see the bug in Maxima's simplify_sum:

(%i1) load("simplify_sum");
(%i2) simplify_sum(sum(binomial(1,n),n,0,inf));
(%o2)                                  3


This bug originates from Maxima: if you evaluate

sum(binomial(1,n),n,0,oo)


then it returns

from sage.calculus.calculus import symbolic_sum
symbolic_sum(binomial(1,n),n,0,oo)


which calls

maxima_calculus.sr_sum(binomial(1,n),n,0,oo)


which returns

from sage.interfaces.maxima_lib import max_to_sr, maxima_eval, max_ratsimp, max_simplify_sum, max_sum, sr_to_max
args = [binomial(1,n), n, 0, oo]
max_to_sr(maxima_eval([[max_ratsimp],[[max_simplify_sum],([max_sum],[sr_to_max(SR(a)) for a in args])]]))


Indeed we can see the bug in Maxima's simplify_sum:

(%i1) load("simplify_sum");
(%i2) simplify_sum(sum(binomial(1,n),n,0,inf));
(%o2)                                  3


This bug originates from Maxima: if you evaluate

sum(binomial(1,n),n,0,oo)


then it returns

from sage.calculus.calculus import symbolic_sum
symbolic_sum(binomial(1,n),n,0,oo)


which calls

maxima_calculus.sr_sum(binomial(1,n),n,0,oo)


which returns

from sage.interfaces.maxima_lib import max_to_sr, maxima_eval, max_ratsimp, max_simplify_sum, max_sum, sr_to_max
args = [binomial(1,n), n, 0, oo]
max_to_sr(maxima_eval([[max_ratsimp],[[max_simplify_sum],([max_sum],[sr_to_max(SR(a)) for a in args])]]))


Indeed we can see the bug in Maxima's simplify_sum:

(%i1) load("simplify_sum");
(%i2) simplify_sum(sum(binomial(1,n),n,0,inf));
(%o2)                                  3


I reported it here: simplify_sum(sum(binomial(1,n),n,0,inf)) gives 3 instead of 2.

This bug originates from Maxima: if you evaluate

sum(binomial(1,n),n,0,oo)


then it returns

from sage.calculus.calculus import symbolic_sum
symbolic_sum(binomial(1,n),n,0,oo)


which calls

maxima_calculus.sr_sum(binomial(1,n),n,0,oo)


which returns

from sage.interfaces.maxima_lib import max_to_sr, maxima_eval, max_ratsimp, max_simplify_sum, max_sum, sr_to_max
args = [binomial(1,n), n, 0, oo]
max_to_sr(maxima_eval([[max_ratsimp],[[max_simplify_sum],([max_sum],[sr_to_max(SR(a)) for a in args])]]))


Indeed we can see the bug in Maxima's simplify_sum:

(%i1) load("simplify_sum");
(%i2) simplify_sum(sum(binomial(1,n),n,0,inf));
(%o2)                                  3


I reported it here: upstream at Maxima, simplify_sum(sum(binomial(1,n),n,0,inf)) gives 3 instead of 2, and it is now tracked as trac ticket #27092.