1 | initial version |
This bug originates from Maxima: if you evaluate
sum(binomial(1,n),n,0,oo)
then it returns
from sage.calculus.calculus import symbolic_sum
symbolic_sum(binomial(1,n),n,0,oo)
which calls
maxima_calculus.sr_sum(binomial(1,n),n,0,oo)
which returns
args = [binomial(1,n), n, 0, oo]
max_to_sr(maxima_eval([[max_ratsimp],[[max_simplify_sum],([max_sum],[sr_to_max(SR(a)) for a in args])]]))
Indeed we can see the bug in Maxima's simplify_sum
:
(%i1) load("simplify_sum");
(%i2) simplify_sum(sum(binomial(1,n),n,0,inf));
(%o2) 3
2 | No.2 Revision |
This bug originates from Maxima: if you evaluate
sum(binomial(1,n),n,0,oo)
then it returns
from sage.calculus.calculus import symbolic_sum
symbolic_sum(binomial(1,n),n,0,oo)
which calls
maxima_calculus.sr_sum(binomial(1,n),n,0,oo)
which returns
from sage.interfaces.maxima_lib import max_to_sr, maxima_eval, max_ratsimp, max_simplify_sum, max_sum, sr_to_max
args = [binomial(1,n), n, 0, oo]
max_to_sr(maxima_eval([[max_ratsimp],[[max_simplify_sum],([max_sum],[sr_to_max(SR(a)) for a in args])]]))
Indeed we can see the bug in Maxima's simplify_sum
:
(%i1) load("simplify_sum");
(%i2) simplify_sum(sum(binomial(1,n),n,0,inf));
(%o2) 3
3 | No.3 Revision |
This bug originates from Maxima: if you evaluate
sum(binomial(1,n),n,0,oo)
then it returns
from sage.calculus.calculus import symbolic_sum
symbolic_sum(binomial(1,n),n,0,oo)
which calls
maxima_calculus.sr_sum(binomial(1,n),n,0,oo)
which returns
from sage.interfaces.maxima_lib import max_to_sr, maxima_eval, max_ratsimp, max_simplify_sum, max_sum, sr_to_max
args = [binomial(1,n), n, 0, oo]
max_to_sr(maxima_eval([[max_ratsimp],[[max_simplify_sum],([max_sum],[sr_to_max(SR(a)) for a in args])]]))
Indeed we can see the bug in Maxima's simplify_sum
:
(%i1) load("simplify_sum");
(%i2) simplify_sum(sum(binomial(1,n),n,0,inf));
(%o2) 3
I reported it here: simplify_sum(sum(binomial(1,n),n,0,inf)) gives 3 instead of 2.
4 | No.4 Revision |
This bug originates from Maxima: if you evaluate
sum(binomial(1,n),n,0,oo)
then it returns
from sage.calculus.calculus import symbolic_sum
symbolic_sum(binomial(1,n),n,0,oo)
which calls
maxima_calculus.sr_sum(binomial(1,n),n,0,oo)
which returns
from sage.interfaces.maxima_lib import max_to_sr, maxima_eval, max_ratsimp, max_simplify_sum, max_sum, sr_to_max
args = [binomial(1,n), n, 0, oo]
max_to_sr(maxima_eval([[max_ratsimp],[[max_simplify_sum],([max_sum],[sr_to_max(SR(a)) for a in args])]]))
Indeed we can see the bug in Maxima's simplify_sum
:
(%i1) load("simplify_sum");
(%i2) simplify_sum(sum(binomial(1,n),n,0,inf));
(%o2) 3
I reported it here: upstream at Maxima, simplify_sum(sum(binomial(1,n),n,0,inf)) gives 3 instead of 2, and it is now tracked as trac ticket #27092.