1 | initial version |

There is a simple approach that consists in using `number_field_elements_from_algebraics`

```
sage: from sage.rings.qqbar import number_field_elements_from_algebraics
sage: number_field_elements_from_algebraics([alpha, beta])
sage: K, (a,b), phi = number_field_elements_from_algebraics([alpha, beta])
sage: K # the field
Number Field in a with defining polynomial y^6 + 12*y^4 + 36*y^2 + 707
sage: a # alpha in K
1/90*a^4 + 1/9*a^2 + 1/2*a + 8/45
sage: b # beta in K
```

1/90*a^4 + 1/9*a^2 - 1/2*a + 8/45
sage: phi(a) == alpha and phi(b) == beta # phi is the embedding K -> QQbar
True

2 | No.2 Revision |

There is a simple approach that consists in using `number_field_elements_from_algebraics`

```
sage: from sage.rings.qqbar import number_field_elements_from_algebraics
sage: number_field_elements_from_algebraics([alpha, beta])
sage: K, (a,b), phi = number_field_elements_from_algebraics([alpha, beta])
sage: K # the field
Number Field in a with defining polynomial y^6 + 12*y^4 + 36*y^2 + 707
sage: a # alpha in K
1/90*a^4 + 1/9*a^2 + 1/2*a + 8/45
sage: b # beta in K
```

1/90*a^4 1/90*a^4 + 1/9*a^2 1/9*a^2 - 1/2*a + 8/45

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.