1 | initial version |

As in 39628...

The **modulus** is also a big important part of the data, so i suppose the curve is the one displayed in:

http://www.secg.org/SEC2-Ver-1.0.pdf, page 24, label `sect113r1`

.

The answer is now

```
R.<T> = PolynomialRing( GF(2) )
F.<t> = GF( 2**113, modulus=X^113 + X^9 + 1 )
a = F.fetch_int( 0x003088250CA6E7C7FE649CE85820F7 )
b = F.fetch_int( 0x00E8BEE4D3E2260744188BE0E9C723 )
E = EllipticCurve( F, [ 1, a, 0, 0, b ] )
```

Comment:

We also have the order of the curve, from the reference, it is the value of the variable `n`

below:

```
P = E.random_point()
n = 2*ZZ( 0x0100000000000000D9CCEC8A39E56F )
print n*P
print "Order: %s" % factor(n)
```

This gives (for "all random points"):

```
(0 : 1 : 0)
Order: 2 * 5192296858534827689835882578830703
sage: bool( (sqrt(q)-1)^2 < n )
True
sage: bool( n < (sqrt(q)+1)^2 )
True
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.