1 | initial version |

Alternatively, the matrix constructor can get an explicit list of lists (or the flat list associated to this one), instead of a function, and there is no confusion any longer. (Well, also using `i`

will overwrite the default value of this variable in sage, which corresponds to $\sqrt{-1}$, i will use `k`

and `n`

instead of `i, j`

.)

For instance:

```
sage: [ 1/(k+n) for k in [1..3] for n in [1..3] ]
[1/2, 1/3, 1/4, 1/3, 1/4, 1/5, 1/4, 1/5, 1/6]
sage: [ [ 1/(k+n) for k in [1..3] ] for n in [1..3] ]
[[1/2, 1/3, 1/4], [1/3, 1/4, 1/5], [1/4, 1/5, 1/6]]
sage: matrix( QQ, [ 1/(k+n) for k in [1..3] for n in [1..3] ] ) # bad
[1/2 1/3 1/4 1/3 1/4 1/5 1/4 1/5 1/6]
sage: matrix( QQ, 3, [ 1/(k+n) for k in [1..3] for n in [1..3] ] )
[1/2 1/3 1/4]
[1/3 1/4 1/5]
[1/4 1/5 1/6]
sage: matrix( QQ, 3, 3, [ 1/(k+n) for k in [1..3] for n in [1..3] ] )
[1/2 1/3 1/4]
[1/3 1/4 1/5]
[1/4 1/5 1/6]
sage: matrix( QQ, [ [ 1/(k+n) for k in [1..3] ] for n in [1..3] ] )
[1/2 1/3 1/4]
[1/3 1/4 1/5]
[1/4 1/5 1/6]
sage: matrix( QQ, 3, [ [ 1/(k+n) for k in [1..3] ] for n in [1..3] ] )
[1/2 1/3 1/4]
[1/3 1/4 1/5]
[1/4 1/5 1/6]
sage: matrix( QQ, 3, 3, [ [ 1/(k+n) for k in [1..3] ] for n in [1..3] ] )
[1/2 1/3 1/4]
[1/3 1/4 1/5]
[1/4 1/5 1/6]
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.