1 | initial version |

Or you could use the `algorithm='unimodular'`

option to `random_matrix`

.

```
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[-429*I + 54 -I - 10]
[ 43*I - 1 1]
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[ 6*I - 7 -7*I - 12]
[ I - 1 -I - 2]
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[ -6*I + 29 -221*I - 103]
[ I + 9 -74*I - 9]
```

You'd need to define your other rings and plop them in the right spot, of course.

2 | No.2 Revision |

Or you could use the `algorithm='unimodular'`

option to `random_matrix`

.

```
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[-429*I + 54 -I - 10]
[ 43*I - 1 1]
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[ 6*I - 7 -7*I - 12]
[ I - 1 -I - 2]
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[ -6*I + 29 -221*I - 103]
[ I + 9 -74*I - 9]
```

You'd need to define your other rings and plop them in the right spot, of ~~course.~~course. Edit: such as follows, though there are probably better ways to get this ring. In particular, be careful since the integral closure of $\mathbb{Z}[\sqrt{n}]$ isn't always equal to it, but depends on the residue class of `n`

(mod 4), if I recall correctly.

```
K = NumberField(x^2 + 2, 's')
OK = K.ring_of_integers()
for n in range(3):
show(random_matrix(OK,2,algorithm='unimodular'))
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.