1 | initial version |
Or you could use the algorithm='unimodular'
option to random_matrix
.
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[-429*I + 54 -I - 10]
[ 43*I - 1 1]
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[ 6*I - 7 -7*I - 12]
[ I - 1 -I - 2]
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[ -6*I + 29 -221*I - 103]
[ I + 9 -74*I - 9]
You'd need to define your other rings and plop them in the right spot, of course.
2 | No.2 Revision |
Or you could use the algorithm='unimodular'
option to random_matrix
.
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[-429*I + 54 -I - 10]
[ 43*I - 1 1]
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[ 6*I - 7 -7*I - 12]
[ I - 1 -I - 2]
sage: random_matrix(GaussianIntegers(),2,algorithm='unimodular')
[ -6*I + 29 -221*I - 103]
[ I + 9 -74*I - 9]
You'd need to define your other rings and plop them in the right spot, of course.course. Edit: such as follows, though there are probably better ways to get this ring. In particular, be careful since the integral closure of $\mathbb{Z}[\sqrt{n}]$ isn't always equal to it, but depends on the residue class of n
(mod 4), if I recall correctly.
K = NumberField(x^2 + 2, 's')
OK = K.ring_of_integers()
for n in range(3):
show(random_matrix(OK,2,algorithm='unimodular'))