1 | initial version |

Pari/gp delivers:

```
? s = 0.1;
? intnum( x=3.9, 4.1, exp( -(x-4)^2/2/s^2 ) / sqrt(2*Pi*s^2) )
%2 = 0.6826894921370858971704650911
```

We can do the same in sage, i.e. call gp:

```
sage: gp( "intnum( x=3.9, 4.1, exp( -(x-4)^2/2/%s^2 ) / sqrt(2*Pi)/%s)" % ( 0.1, 0.1 ) )
0.6826894921370858971704650911
```

Or call the numerical integral from sage:

```
sage: integral_numerical( lambda x : exp( -(x-4)^2/2/0.1^2 ) / sqrt(2*pi)/0.1, 3.9, 4.1 )
(0.6826894921370853, 7.579375928402468e-15)
```

which computes the approximative value `0.6826894921370853`

with an error less than $7,6\cdot 10^{-15}$, as given in the second argument.

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.