![]() | 1 | initial version |
If i've got the right message of the cited paper, than the following sage code computes the toric ideal I
of the (Z-lift of the) parity check matrix for the linear code C
of G=G2
posted above, also associates the ideal J
generated by the X3j−1, Xj being a running variable through the ones of the polynomial ring of I
, then takes the sum K = I + J
. Its generator list is the sum of the two generator lists for I
and J
.
This K
is the ideal IC from (9) and (10) of loc. cit.
We finally compute the Groebner basis of K
as in the Example of loc. cit., page 487.
(In order to get the right basis, it is important to have the lex order on the ring R, where I,J,K live in. The default order leads to a mess. So the first line is the important one, then we pass this polynomial ring to the ToricIdeal
constructor.)
R.<X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11> \
= PolynomialRing( QQ, order='lex' ) # sine lex, nulla salus
G = matrix( GF(3),
[ [1,0,0,0,0,0, 1,1,1,1,1] ,
[0,1,0,0,0,0, 0,1,2,2,1] ,
[0,0,1,0,0,0, 1,0,1,2,2] ,
[0,0,0,1,0,0, 2,1,0,1,2] ,
[0,0,0,0,1,0, 2,2,1,0,1] ,
[0,0,0,0,0,1, 1,2,2,1,0] ] )
# This is [ I | M ] as in loc. cit., Example, page 487.
print G
C = LinearCode( G )
print C
H = C.parity_check_matrix()
# we do not print H
I = ToricIdeal( H, polynomial_ring = R )
J = ideal( z^3-1 for z in I.parent().ring().gens() )
K = I + J
print "\nI is generated by:"
for pol in I.gens(): print " %s" % pol
print "\nJ is generated by:"
for pol in J.gens(): print " %s" % pol
print "\nK is generated by:"
for pol in K.gens(): print " %s" % pol
print "\nK has the Groebner basis:"
for pol in K.groebner_basis(): print " %s" % pol
This delivers:
[1 0 0 0 0 0 1 1 1 1 1]
[0 1 0 0 0 0 0 1 2 2 1]
[0 0 1 0 0 0 1 0 1 2 2]
[0 0 0 1 0 0 2 1 0 1 2]
[0 0 0 0 1 0 2 2 1 0 1]
[0 0 0 0 0 1 1 2 2 1 0]
Linear code of length 11, dimension 6 over Finite Field of size 3
I is generated by:
-X01*X02*X03^2*X04^2*X05 + X11
-X01*X02*X03*X05^2 + X10
-X01*X03^2*X04*X05^2 + X09
-X01*X02^2*X03*X04^2 + X08
-X01*X02^2*X04*X05 + X07
-X02^2*X03^2*X04^2*X05^2 + X06
J is generated by:
X01^3 - 1
X02^3 - 1
X03^3 - 1
X04^3 - 1
X05^3 - 1
X06^3 - 1
X07^3 - 1
X08^3 - 1
X09^3 - 1
X10^3 - 1
X11^3 - 1
K is generated by:
-X01*X02*X03^2*X04^2*X05 + X11
-X01*X02*X03*X05^2 + X10
-X01*X03^2*X04*X05^2 + X09
-X01*X02^2*X03*X04^2 + X08
-X01*X02^2*X04*X05 + X07
-X02^2*X03^2*X04^2*X05^2 + X06
X01^3 - 1
X02^3 - 1
X03^3 - 1
X04^3 - 1
X05^3 - 1
X06^3 - 1
X07^3 - 1
X08^3 - 1
X09^3 - 1
X10^3 - 1
X11^3 - 1
K has the Groebner basis:
X01 - X07^2*X08^2*X09^2*X10^2*X11^2
X02 - X08^2*X09*X10*X11^2
X03 - X07^2*X09^2*X10*X11
X04 - X07*X08^2*X10^2*X11
X05 - X07*X08*X09^2*X11^2
X06 - X07^2*X08*X09*X10^2
X07^3 - 1
X08^3 - 1
X09^3 - 1
X10^3 - 1
X11^3 - 1
And matches.