1 | initial version |

You can also solve it more directly without explicitly computing the Groebner basis.

```
sage: R.<a,b,c> = PolynomialRing(QQ,order='lex')
sage: f1 = a+b+c - 3
sage: f2 = a^2+b^2+c^2 - 5
sage: f3 = a^3+b^3+c^3 - 7
sage: Rel = ideal(f1,f2,f3)
sage: Rel.reduce(a^5+b^5+c^5)
29/3
```

(I came up with this solution after reading the solution to Exercise 37 from the book "Calcul Mathematique avec Sage", given on page 423)

2 | No.2 Revision |

You can also solve it a bit more directly without explicitly ~~computing ~~invoking the Groebner ~~basis.~~basis (this happens under the hood).

```
sage: R.<a,b,c> = PolynomialRing(QQ,order='lex')
sage: f1 = a+b+c - 3
sage: f2 = a^2+b^2+c^2 - 5
sage: f3 = a^3+b^3+c^3 - 7
sage: Rel = ideal(f1,f2,f3)
sage: Rel.reduce(a^5+b^5+c^5)
29/3
```

(I came up with this solution after reading the solution to Exercise 37 from the book "Calcul Mathematique avec Sage", given on page 423)

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.