1 | initial version |

Define your number field $\mathbb{Q}(\alpha), \alpha = \sqrt{2} + i$ .

```
K.<a> = NumberField(definingPolynomial)
```

In your particular case

```
Z.<x> = ZZ[] #Makes x lives in Z[x]
K.<a> = NumberField( minpoly(sqrt(2)+i, x))
I = K.ideal(2)
factor(I)
#(Fractional ideal (1/12*a^3 - 1/4*a^2 - 5/12*a + 5/4))^4
#Even fancier
latex(factor(I))
#(\left(\frac{1}{12} a^{3} - \frac{1}{4} a^{2} - \frac{5}{12} a + \frac{5}{4}\right))^{4}
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.