1 | initial version |

First, here is a classical way to get solutions of you equation:

```
sage: a = 5
sage: p = x^2 - 7*a*x + 5
sage: p.solve(x)
[x == -1/2*sqrt(1205) + 35/2, x == 1/2*sqrt(1205) + 35/2]
```

So, you have a list of solutions. Each solution is of the form `x == -1/2*sqrt(1205) + 35/2`

which is a symbolic expression. You can get the right hand side with the `rhs()`

method:

sage: [s.rhs() for s in p.solve(x)]
[-1/2*sqrt(1205) + 35/2, 1/2*sqrt(1205) + 35/2]

Then, you can take the maximal element of this list:

sage: max([s.rhs() for s in p.solve(x)]) 1/2*sqrt(1205) + 35/2

Alternatively, instead of getting solutions , you can get them as Python dictionaries:

```
sage: p.solve(x, solution_dict=True)
[{x: -1/2*sqrt(1205) + 35/2}, {x: 1/2*sqrt(1205) + 35/2}]
```

So, you can get each solution by looking at the `x`

values:

```
sage: [s[x] for s in p.solve(x, solution_dict=True)]
[-1/2*sqrt(1205) + 35/2, 1/2*sqrt(1205) + 35/2]
```

Then, as before, you can take the maximal element of this list:

```
sage: max([s[x] for s in p.solve(x, solution_dict=True)])
1/2*sqrt(1205) + 35/2
```

2 | No.2 Revision |

First, here is a classical way to get solutions of you equation:

```
sage: a = 5
sage: p = x^2 - 7*a*x + 5
sage: p.solve(x)
[x == -1/2*sqrt(1205) + 35/2, x == 1/2*sqrt(1205) + 35/2]
```

So, you have a list of solutions. Each solution is of the form `x == -1/2*sqrt(1205) + 35/2`

which is a symbolic expression. You can get the right hand side with the `rhs()`

method:

```
sage: [s.rhs() for s in p.solve(x)]
```~~[-1/2~~*sqrt(1205) **[-1/2*sqrt(1205) + 35/2, *~~1/2~~sqrt(1205) + 35/2]1/2*sqrt(1205) + 35/2]

Then, you can take the maximal element of this list:

```
sage: max([s.rhs() for s in p.solve(x)])
1/2*sqrt(1205) +
```~~35/2~~35/2

Alternatively, instead of getting solutions , you can get them as Python dictionaries:

```
sage: p.solve(x, solution_dict=True)
[{x: -1/2*sqrt(1205) + 35/2}, {x: 1/2*sqrt(1205) + 35/2}]
```

So, you can get each solution by looking at the `x`

values:

```
sage: [s[x] for s in p.solve(x, solution_dict=True)]
[-1/2*sqrt(1205) + 35/2, 1/2*sqrt(1205) + 35/2]
```

Then, as before, you can take the maximal element of this list:

```
sage: max([s[x] for s in p.solve(x, solution_dict=True)])
1/2*sqrt(1205) + 35/2
```

3 | No.3 Revision |

First, here is a classical way to get solutions of you equation:

```
sage: a = 5
sage: p = x^2 - 7*a*x + 5
sage: p.solve(x)
[x == -1/2*sqrt(1205) + 35/2, x == 1/2*sqrt(1205) + 35/2]
```

So, you have a list of solutions. Each solution is of the form `x == -1/2*sqrt(1205) + 35/2`

which is a symbolic expression. You can get the right hand side of such an equality with the `rhs()`

method:

```
sage: [s.rhs() for s in p.solve(x)]
[-1/2*sqrt(1205) + 35/2, 1/2*sqrt(1205) + 35/2]
```

Then, you can take the maximal element of this list:

```
sage: max([s.rhs() for s in p.solve(x)])
1/2*sqrt(1205) + 35/2
```

Alternatively, instead of getting solutions , you can get them as Python dictionaries:

```
sage: p.solve(x, solution_dict=True)
[{x: -1/2*sqrt(1205) + 35/2}, {x: 1/2*sqrt(1205) + 35/2}]
```

So, you can get each solution by looking at the `x`

values:

```
sage: [s[x] for s in p.solve(x, solution_dict=True)]
[-1/2*sqrt(1205) + 35/2, 1/2*sqrt(1205) + 35/2]
```

Then, as before, you can take the maximal element of this list:

```
sage: max([s[x] for s in p.solve(x, solution_dict=True)])
1/2*sqrt(1205) + 35/2
```

4 | No.4 Revision |

First, here is a classical way to get solutions of you equation:

```
sage: a = 5
sage: p = x^2 - 7*a*x + 5
sage: p.solve(x)
[x == -1/2*sqrt(1205) + 35/2, x == 1/2*sqrt(1205) + 35/2]
```

So, you have a list of solutions. Each solution is of the form `x == -1/2*sqrt(1205) + 35/2`

which is a symbolic expression. You can get the right hand side of such an equality with the `rhs()`

method:

```
sage: [s.rhs() for s in p.solve(x)]
[-1/2*sqrt(1205) + 35/2, 1/2*sqrt(1205) + 35/2]
```

Then, you can take the maximal element of this list:

```
sage: max([s.rhs() for s in p.solve(x)])
1/2*sqrt(1205) + 35/2
```

Alternatively, instead of getting solutions ~~, ~~as symbolic expressions, you can get them as Python dictionaries:

```
sage: p.solve(x, solution_dict=True)
[{x: -1/2*sqrt(1205) + 35/2}, {x: 1/2*sqrt(1205) + 35/2}]
```

So, you can get each solution by looking at the `x`

values:

```
sage: [s[x] for s in p.solve(x, solution_dict=True)]
[-1/2*sqrt(1205) + 35/2, 1/2*sqrt(1205) + 35/2]
```

Then, as before, you can take the maximal element of this list:

```
sage: max([s[x] for s in p.solve(x, solution_dict=True)])
1/2*sqrt(1205) + 35/2
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.