1 | initial version |

You should work on the Z/nZ module as follows:

```
sage: R = IntegerModRing(15)
```

2 | No.2 Revision |

You should work on the Z/nZ module as follows:

```
sage: R = IntegerModRing(15)
sage: M = Matrix(R, [[1,2],[1,4],[2,4]])
sage: b = vector(R,[3,5,6])
sage: M.solve_right(b)
(1, 1)
```

3 | No.3 Revision |

You should directly work on the ~~Z/nZ ~~$\mathbb{Z}/n\mathbb{Z}$ module as follows:

```
sage: R = IntegerModRing(15)
sage: M = Matrix(R, [[1,2],[1,4],[2,4]])
sage: b =
```~~vector(R,[3,5,6])
~~vector(R, [3,5,6])
sage: M.solve_right(b)
(1, 1)

4 | No.4 Revision |

You should directly work on the ~~$\mathbb{Z}/n\mathbb{Z}$ ~~$\mathbb{Z}/m\mathbb{Z}$ module as follows:

```
sage: R = IntegerModRing(15)
sage: M = Matrix(R, [[1,2],[1,4],[2,4]])
sage: b = vector(R, [3,5,6])
sage: M.solve_right(b)
(1, 1)
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.