1 | initial version |
You should work on the Z/nZ module as follows:
sage: R = IntegerModRing(15)
2 | No.2 Revision |
You should work on the Z/nZ module as follows:
sage: R = IntegerModRing(15)
sage: M = Matrix(R, [[1,2],[1,4],[2,4]])
sage: b = vector(R,[3,5,6])
sage: M.solve_right(b)
(1, 1)
3 | No.3 Revision |
You should directly work on the Z/nZ $\mathbb{Z}/n\mathbb{Z}$ module as follows:
sage: R = IntegerModRing(15)
sage: M = Matrix(R, [[1,2],[1,4],[2,4]])
sage: b = vector(R,[3,5,6])
vector(R, [3,5,6])
sage: M.solve_right(b)
(1, 1)
4 | No.4 Revision |
You should directly work on the $\mathbb{Z}/n\mathbb{Z}$ $\mathbb{Z}/m\mathbb{Z}$ module as follows:
sage: R = IntegerModRing(15)
sage: M = Matrix(R, [[1,2],[1,4],[2,4]])
sage: b = vector(R, [3,5,6])
sage: M.solve_right(b)
(1, 1)