# Revision history [back]

FWIW, I've used OpenOpt for a few things and had some success. I haven't had as much luck with the scipy optimizers, but YMMV.

One easy way to avoid the cost of multiple evaluations is to take advantage of the cached_function decorator:

def complicated(x,y,z):
f = (x*2-y*z)**2
g = x+y-9*z+4
return f,g

@cached_function
def complicated_cached(x,y,z):
f = (x*2-y*z)**2
g = x+y-9*z+4
return f,g

# or complicated_cached = cached_function(complicated)

def get(fn):
a = minimize_constrained(lambda x: fn(*x),
lambda x: fn(*x),
[1,1,1])
return a


which produces a significant speedup:

sage: %timeit a = get(complicated)
25 loops, best of 3: 14.4 ms per loop
sage: %timeit b = get(complicated_cached)
625 loops, best of 3: 1.51 ms per loop


FWIW, I've used OpenOpt for a few things and had some success. I haven't had as much luck with the scipy optimizers, but YMMV.

One easy way to avoid the cost of multiple evaluations is to take advantage of the cached_function decorator:

def complicated(x,y,z):
f = (x*2-y*z)**2
g = x+y-9*z+4
sleep(0.10)
return f,g

@cached_function
def complicated_cached(x,y,z):
f = (x*2-y*z)**2
g = x+y-9*z+4
sleep(0.10)
return f,g

# or complicated_cached = cached_function(complicated)

def get(fn):
a = minimize_constrained(lambda x: fn(*x),
lambda x: fn(*x),
[1,1,1])
return a


which produces can produce a significant speedup:speedup. (I put in the sleeps to make the one-call time longer-- originally I did multiple runs, but the caching means that I wasn't measuring what I wanted to.)

sage: %timeit time a = get(complicated)
25 loops, best of 3: 14.4 ms per loop
Time: CPU 0.06 s, Wall: 7.67 s
sage: %timeit time b = get(complicated_cached)
625 loops, best of 3: 1.51 ms per loop
Time: CPU 0.03 s, Wall: 3.83 s


FWIW, I've used OpenOpt for a few things and had some success. I haven't had as much luck with the scipy optimizers, but YMMV.

One easy way to avoid the cost of multiple evaluations is to take advantage of the cached_function decorator:

def complicated(x,y,z):
f = (x*2-y*z)**2
g = x+y-9*z+4
sleep(0.10)
return f,g

@cached_function
def complicated_cached(x,y,z):
f = (x*2-y*z)**2
g = x+y-9*z+4
sleep(0.10)
return f,g

# or complicated_cached = cached_function(complicated)

def get(fn):
a = minimize_constrained(lambda x: fn(*x),
lambda x: fn(*x),
[1,1,1])
return a


which can produce a significant speedup. (I put in the sleeps to make the one-call time longer-- originally I did multiple runs, but the caching means that I wasn't measuring what I wanted to.)

sage: time a = get(complicated)
Time: CPU 0.06 s, Wall: 7.67 s
sage: time b = get(complicated_cached)
Time: CPU 0.03 s, Wall: 3.83 s


UPDATE:

When numpy gets involved caching the function is a little trickier, because we need an immutable key. We can get around the problem by coercing to a tuple:

def func(p):
f = -p-p+50
c_1 = p-45
c_2 = p-5
c_3 = -50*p-24*p+2400
c_4 = -30*p-33*p+2100
return f, c_1, c_2, c_3, c_4

func_cached = CachedFunction(func)
func_wrap = lambda x: func_cached(tuple(x))

def get2(fn):
a = minimize_constrained(lambda x: fn(x),
[lambda x: fn(x),lambda x: fn(x),lambda x: fn(x),lambda x: fn(x)],
[2,3])


which produces:

sage: time get2(func)
Time: CPU 0.10 s, Wall: 0.10 s
sage: time get2(func_wrap)
Time: CPU 0.02 s, Wall: 0.02 s