Ask Your Question

bcriger's profile - activity

2020-05-01 01:10:37 +0200 received badge  Famous Question (source)
2017-09-29 00:31:33 +0200 received badge  Student (source)
2017-06-30 05:31:28 +0200 received badge  Notable Question (source)
2016-08-03 10:54:21 +0200 received badge  Popular Question (source)
2013-07-08 19:06:47 +0200 commented answer multivariate polynomial root-finding

Yes, there are multiple solutions $\bar{q}(p)$. I've found a workaround that involves numerical root-finding for high-degree polynomials, let me know if you want to see it.

2013-07-08 16:53:42 +0200 commented answer multivariate polynomial root-finding

I'm afraid that's mathematically incorrect. Treating the polynomial I provided as a system of polynomials eliminates solutions. They don't all have to be zero in order for the problem to be solved.

2013-07-08 14:10:36 +0200 asked a question multivariate polynomial root-finding

I have a series of large, high-degree, bivariate polynomials in two variables, p and q. For example, one of these polynomials is:

$p^7 (25/4 q^6 - 75 q^5 + 525/2 q^4 - 400 q^3 + 300 q^2 - 120 q + 20) + p^6 (-175/8 q^6 + 525/2 q^5 - 3675/4 q^4 + 1400 q^3 - 1050 q^2 + 420 q - 70) + p^5 (255/8 q^6 - 765/2 q^5 + 2655/2 q^4 - 1980 q^3 + 1425 q^2 - 540 q + 84) + p^4 (-25 q^6 + 300 q^5 - 8175/8 q^4 + 1450 q^3 - 1875/2 q^2 + 300 q - 35) + p^3 (45/4 q^6 - 135 q^5 + 1785/4 q^4 - 580 q^3 + 300 q^2 - 60 q) + p^2 (-45/16 q^6 + 135/4 q^5 - 855/8 q^4 + 120 q^3 - 75/2 q^2) + p (5/16 q^6 - 15/4 q^5 + 45/4 q^4 - 10 q^3) + 1$

I would like to find all values of $q$ for which this polynomial is equal to $1-p$. The following code block illustrates my problem:

sage: fid7tof
5/4*(5*q^6 - 60*q^5 + 210*q^4 - 320*q^3 + 240*q^2 - 96*q + 16)*p^7 - 35/8*(5*q^6 - 60*q^5 + 210*q^4 - 320*q^3 + 240*q^2 - 96*q + 16)*p^6 + 3/8*(85*q^6 - 1020*q^5 + 3540*q^4 - 5280*q^3 + 3800*q^2 - 1440*q + 224)*p^5 - 5/8*(40*q^6 - 480*q^5 + 1635*q^4 - 2320*q^3 + 1500*q^2 - 480*q + 56)*p^4 + 5/4*(9*q^6 - 108*q^5 + 357*q^4 - 464*q^3 + 240*q^2 - 48*q)*p^3 - 15/16*(3*q^6 - 36*q^5 + 114*q^4 - 128*q^3 + 40*q^2)*p^2 + 5/16*(q^6 - 12*q^5 + 36*q^4 - 32*q^3)*p + 1
sage: solve([fid7tof == 1-p], q)
[0 == 5*(10*p^4 - 20*p^3 + 16*p^2 - 6*p + 1)*q^6 - 60*(10*p^4 - 20*p^3 + 16*p^2 - 6*p + 1)*q^5 + 30*(70*p^4 - 140*p^3 + 109*p^2 - 39*p + 6)*q^4 - 160*(20*p^4 - 40*p^3 + 29*p^2 - 9*p + 1)*q^3 + 160*p^4 + 600*(4*p^4 - 8*p^3 + 5*p^2 - p)*q^2 - 320*p^3 - 960*(p^4 - 2*p^3 + p^2)*q + 112*p^2 + 48*p + 16]

All Sage returns is another multivariate polynomial, which doubtless has many solutions $\bar{q}(p)$. Is there something I can do to get these solutions?