Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Systems of 2-order ODEs can be reduced to systems of 1-order ODEs.

System of 2-order ODEs:

y1''+y2+1=0
y2''+y1 =0

Additional functions:

y3=y1'
y4=y2'

System of 1-order ODEs:

y1'=y3
y2'=y4
y3'=-y2-1
y4'=-y1

Sage numerical solution:

T=ode_solver()
f = lambda t,y:[y[2],y[3],-y[1]-1,-y[0]]
T.function=f
T.ode_solve(y_0=[1,1,0,0],t_span=[0,20],num_points=1000)

Plot y1:

f = T.interpolate_solution()
plot(f,0,5).show()

Plot y2:

f = T.interpolate_solution(i=1)
plot(f,0,5).show()

Systems of 2-order ODEs can be reduced to systems of 1-order ODEs.

System of 2-order ODEs:

y1''+y2+1=0
y2''+y1 =0

Additional functions:

y3=y1'
y4=y2'

System of 1-order ODEs:

y1'=y3
y2'=y4
y3'=-y2-1
y4'=-y1

Sage numerical solution:

T=ode_solver()
f = lambda t,y:[y[2],y[3],-y[1]-1,-y[0]]
T.function=f
T.ode_solve(y_0=[1,1,0,0],t_span=[0,20],num_points=1000)

Plot y1:

f = T.interpolate_solution()
plot(f,0,5).show()

Plot y2:

f = T.interpolate_solution(i=1)
plot(f,0,5).show()
plot(f,0,5).show(i=1)

Systems of 2-order ODEs can be reduced to systems of 1-order ODEs.

System of 2-order ODEs:

y1''+y2+1=0
y2''+y1 =0

Additional functions:

y3=y1'
y4=y2'

System of 1-order ODEs:

y1'=y3
y2'=y4
y3'=-y2-1
y4'=-y1

Sage numerical solution:

T=ode_solver()
f = lambda t,y:[y[2],y[3],-y[1]-1,-y[0]]
T.function=f
T.ode_solve(y_0=[1,1,0,0],t_span=[0,20],num_points=1000)

Plot y1:

f = T.interpolate_solution()
plot(f,0,5).show()

Plot y2:

f = T.interpolate_solution(i=1)
plot(f,0,5).show(i=1)
plot(f,0,5).show()

Systems of 2-order ODEs can be reduced to systems of 1-order ODEs.

System of 2-order ODEs:

$$ y1''+y2+1=0 $$ $$ y2''+y1 =0

$$

Additional functions:

$$ y3=y1' $$ $$ y4=y2'

$$

System of 1-order ODEs:

$$ y1'=y3 $$ $$ y2'=y4 $$ $$ y3'=-y2-1 $$ $$ y4'=-y1

$$

Sage numerical solution:

T=ode_solver()
sage: T = ode_solver()
sage: f = lambda t,y:[y[2],y[3],-y[1]-1,-y[0]]
T.function=f
T.ode_solve(y_0=[1,1,0,0],t_span=[0,20],num_points=1000)
t, y: [y[2], y[3], -y[1] - 1, -y[0]]
sage: T.function = f
sage: T.ode_solve(y_0=[1, 1, 0, 0], t_span=[0, 20], num_points=1000)

Plot y1:

sage: f = T.interpolate_solution()
plot(f,0,5).show()
sage: plot(f, 0, 5).show()

Plot y2:

sage: f = T.interpolate_solution(i=1)
plot(f,0,5).show()
sage: plot(f, 0, 5).show()

Systems of 2-order ODEs can be reduced to systems of 1-order ODEs.

System of 2-order ODEs:

$$ y1''+y2+1=0 $$

$$ $$ y2''+y1 =0 $$

Additional functions:

$$ y3=y1' $$

$$ $$ y4=y2' $$

System of 1-order ODEs:

$$ y1'=y3 $$

$$ y2'=y4 $$

$$ y2'=y4 y3'=-y2-1 $$

$$ $$ y3'=-y2-1 $$ $$ y4'=-y1 $$

Sage numerical solution:

sage: T = ode_solver()
sage: f = lambda t, y: [y[2], y[3], -y[1] - 1, -y[0]]
sage: T.function = f
sage: T.ode_solve(y_0=[1, 1, 0, 0], t_span=[0, 20], num_points=1000)

Plot y1:

sage: f = T.interpolate_solution()
sage: plot(f, 0, 5).show()

Plot y2:

sage: f = T.interpolate_solution(i=1)
sage: plot(f, 0, 5).show()

Systems of 2-order second order ODEs can be reduced to systems of 1-order first order ODEs.

System of 2-order For example let us start with this system of second order ODEs:

$$ y1''+y2+1=0 $$

$$ y2''+y1 =0 $$

Additional

  • $y_1'' + y_2 + 1 = 0$
  • $y_2'' + y_1 = 0$

Introduce additional functions:

$$ y3=y1' $$

$$ y4=y2' $$

System of 1-order

  • $y_3 = y_1'$
  • $y_4 = y_2'$

We obtain a system of first order ODEs:

$$ y1'=y3 $$

$$ y2'=y4 $$

$$ y3'=-y2-1 $$

$$ y4'=-y1 $$

  • $y_1' = y_3$
  • $y_2' = y_4$
  • $y_3' = -y_2 - 1$
  • $y_4' = -y_1$

Sage numerical solution:

sage: T = ode_solver()
sage: f = lambda t, y: [y[2], y[3], -y[1] - 1, -y[0]]
sage: T.function = f
sage: T.ode_solve(y_0=[1, 1, 0, 0], t_span=[0, 20], num_points=1000)

Plot y1:$y_1$:

sage: f = T.interpolate_solution()
sage: plot(f, 0, 5).show()

Plot y2:$y_2$:

sage: f = T.interpolate_solution(i=1)
sage: plot(f, 0, 5).show()