Ask Your Question

Starx's profile - activity

2018-10-29 18:45:50 +0100 received badge  Famous Question (source)
2016-05-31 23:52:03 +0100 received badge  Notable Question (source)
2015-02-16 14:49:34 +0100 received badge  Teacher (source)
2015-02-16 14:49:34 +0100 received badge  Necromancer (source)
2014-06-06 08:28:45 +0100 received badge  Popular Question (source)
2013-10-18 15:19:35 +0100 answered a question Ideals of non-commutative polynomials

What you're asking for doesn't exist in complete generality because this would imply a solution to the word problem. The GAP package GBNP implements Grobner bases for non-commutative polynomial rings. The algorithm need not terminate, but when it does it solves the problem you're asking about.

2012-01-31 11:29:16 +0100 commented answer How can I construct graded algebras?

Thanks, this was very helpful. I've decided to go ahead and implement what I need myself and your worksheet will be very helpful in making my code play nice with the structure of sage.

2012-01-31 11:26:16 +0100 received badge  Supporter (source)
2012-01-12 19:49:07 +0100 asked a question How can I construct graded algebras?

I am trying to create a graded algebra using generators and relations. I found that sage has a category for such things:

http://www.sagemath.org/doc/reference/sage/categories/graded_modules_with_basis.html

but there are no constructors or examples of how to create these things. Does anyone know where I can find examples of how to construct graded algebras, or more generally how to construct non-commutative algebras?