2020-04-02 19:37:16 +0200 | received badge | ● Student (source) |

2020-04-02 19:27:44 +0200 | asked a question | How to Compute $\operatorname{Pic}(\mathbb{Z}[\zeta_p,1/p])$ Consider the extension $\mathbb{Q}(\zeta_p)/\mathbb{Q}$, where $\zeta_p$ is a primitive $p^{\text{th}}$ root of unity (and $p$ is a prime number). Form the ring of integers $\mathbb{Z}[\zeta_p]$. Now, invert the prime $p$, to obtain the ring $R=\mathbb{Z}[\zeta_p,1/p]$. I want to compute $\operatorname{Pic}(R)$. Is this possible to do using sagemath? If so, how? How do I construct the ring $R$ using sagemath? |

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.