2019-03-07 09:30:21 +0100 | received badge | ● Nice Question (source) |

2019-03-07 00:54:27 +0100 | received badge | ● Student (source) |

2019-03-07 00:40:40 +0100 | asked a question | Branching to Levi Subgroups in Sage In the Sage computer package, there useful exist tools for branching representations of a simple Lie group to a Levi subgroup. See for example the root system $branching Rules \subseteq $ combinatorics in the Sage manual Explicitly, one is branching to subgroup corresponding to a Dynkin sub-diagram, obtained by removing a single node. For example, we can branch from $\operatorname{SL}(n)$ to the subgroup $\operatorname{SL}(n-1)$. However, $\operatorname{SL}(n-1)$ can be considered as "living" in the larger subgroup $\operatorname{SL}(n-1) \times \operatorname{U}(1)$. This is true for every subgroup coming from a deleted node, i.e. one can always take the product of the subgroup with $\operatorname{U}(1)$, to obtain a larger subgroup. How does one branch to this subgroup in Sage. For example, it is done in the LieArt program for mathematica: see A3 of the ArXiv version of Lie Art. Is this also possible in Sage? |

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.