2020-10-06 02:05:19 -0600 | received badge | ● Famous Question (source) |

2020-04-30 07:46:19 -0600 | received badge | ● Nice Question (source) |

2020-04-30 01:07:17 -0600 | received badge | ● Notable Question (source) |

2019-09-20 04:41:37 -0600 | received badge | ● Popular Question (source) |

2019-01-24 07:51:16 -0600 | asked a question | Efficiently testing probable primes I have to test extremely huge numbers (100k+ digits) in a reasonable time if they are probable primes. Are there codes for doing that? Are there C-codes interfaced with SAGE? Or something else? |

2019-01-24 05:46:57 -0600 | asked a question | C compiler and C program for testing primality I have to test the primality of some very big numbers (100k+ digits), I mean it is enough to know if they are probable primes. I would know if there is a program in C for doing that. And what C-compiler do you suggest? Are there some C-libraries which allow probable primes tests? |

2018-12-13 08:46:48 -0600 | asked a question | From Pari to SAGE f(n,p)={d=ceil(log(2)/log(10) v=[100000..101000] forprime(q=1,10^7,z=select(m->f(m,q)==0,v);if(length(z)>0,v=setminus(v,z);print(q," ",length(z)," ",length(v)))) This is a program for PARI. For numbers of the form (2^k-1)*10^d+2^(k-1)-1 where d is the number of decimal digits of 2^(k-1)-1 in the range k=[100000..101000], it displays numbers with no factor below 10^7. Can somebody translate this PARI program in a SAGE program? |

2018-12-12 02:32:17 -0600 | asked a question | Find factors of large integers without fully factoring I have to find the smallest factor of a big number with SAGE. The problem with the factor command is that it displays the results only when the number is fully factored and so for a big number it could take an eternity to have the result. Has somebody a good program for finding factors of a big number without waiting for a full factorization? |

2018-12-11 11:18:21 -0600 | commented answer | A routine for testing a conjecture @dan_fulea and what if I want to cancel the factorization? |

2018-12-11 11:17:37 -0600 | received badge | ● Supporter (source) |

2018-12-11 09:12:08 -0600 | received badge | ● Editor (source) |

2018-12-11 09:11:22 -0600 | commented answer | A routine for testing a conjecture @dan_fulea the program checks primes or probable primes? I am looking for probable primes. |

2018-12-05 00:45:08 -0600 | commented question | Sage program for 40!+k project @Emmanuel Charpentier no it is a project in mathexchange. |

2018-12-04 12:58:07 -0600 | received badge | ● Student (source) |

2018-12-04 06:55:39 -0600 | asked a question | Sage program for 40!+k project The object is to find all integers k , lets say in the range [-10^9,10^9], for which the number 40!+k splits in three prime factors with 16 decimal digits. Has somebody an efficient routine for Sage? |

2018-12-04 06:41:18 -0600 | asked a question | Program for Sage The ec(k) numbers are so defined:
ec(k)=(2^k-1) |

2018-12-04 06:41:18 -0600 | asked a question | A routine for testing a conjecture The ec numbers are so defined: where For some values of |

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.