2018-05-24 10:15:46 -0500 | received badge | ● Student (source) |

2018-05-23 16:22:00 -0500 | asked a question | Can we find Gaussian primes $\pi = 1 + 8 \mathbb{Z}[i]$ with $N(\pi) < 10000$? It's an exercise in computational number theory. Either by hand or by computer, can we find the Gaussian primes $\pi = 1 + 8 \mathbb{Z}[i]$? To keep the list finite I guess we could have $N(\pi) < 10000$. For example, is $\mathfrak{p} = (1+8i)$ a prime? Or $\mathfrak{p} = (-7 + 8i)$? I don't even know how to index the primes less than these. The norms are $1^2 + 8^2 = 65 = 5 \times 13$ and $(-7)^2 + 8^2 = 113$, so the first could factor and the second does not. For $\mathfrak{p} = (a + bi)$ to check it is prime over $\mathbb{Z}[i]$, is it sufficient to check that $N(\mathfrak{p}) = a^2 + b^2$ is a prime over $\mathbb{Z}$? It would be great to see the code in |

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.