2020-01-10 16:06:38 -0600 received badge ● Popular Question (source) 2016-04-12 12:22:23 -0600 asked a question Bug in eigenmatrix command? I'm new to sage, so this might be my bad, but I think there is a mismatch between complex conjugate eigevector/values in what the eigenmatrix_right() returns: In my case: J = matrix(CDF, [[-2.53634347567, 2.04801738686, -0.0, -62.166145304], [ 0.7, -0.6, 0.0, 0.0], [0.547271128842, 0.0, -0.3015, -21.7532081652], [0.0, 0.0, 0.3, -0.4]]) D, P = J.eigenmatrix_right()  D has two (almost) purely imaginary complex conjugate eigenvalues. I thought A1 = J * P  and A2 = P * D  should be identical, but the complex conjugate eigenvalues are interchanged, so two columns in A1 and A2 differ by a multiple of (-1). In my case things work ok if I interchange D and D. Am I missing something? 2016-04-11 10:56:31 -0600 received badge ● Scholar (source) 2016-04-11 10:54:37 -0600 commented answer Eigenvalues/vectors of jacobian matrix as complex numbers Awesome!! I don't know what it was, but this did the trick. The eigenvalues and vectors are computed in a heartbeat with no error messages. 2016-04-11 06:31:24 -0600 received badge ● Editor (source) 2016-04-11 06:14:46 -0600 received badge ● Student (source) 2016-04-11 06:04:53 -0600 asked a question Eigenvalues/vectors of jacobian matrix as complex numbers Hello, I'm trying to find the eigenvalues and eigenvectors of a jacobian matrix expressed as complex numbers (complex double field?), not an expression (like 1/2 * sqrt(...)...). sorry for the silly question... EDIT: Some more info; I'm studying a dynamical system at an equilibrium point. I would like to get an expression for the eigenvectors and values assosiated with the center eigenspace of a "hopf bifurcation". Here is the code in question: var('alpha1, alpha2, beta1, beta2, mu1, mu2, phi1, phi2, c1, c2, k1, k2, t ') ; # suggested parameter values: alpha1 = 0.7; alpha2 = 0.3 beta1 = 0.003; beta2 = 0.0015 mu1 = 0.6; mu2 = 0.4 phi1 = 2.3; phi2 = 4 c1 = 400000; c2 = 100 k1 = 0.0033100000000000; k2 = 0.000988067680992286; # The vector field and its jacobian matrix: f(P, M, L, G,k2) = [phi1*M*(1-M/c1) - (alpha1 + beta1)* P - k1*P*G, alpha1*P - mu1*M, phi2*G*(1-G/c2) - (alpha2 + beta2)* L + k2*P*G, alpha2*L - mu2*G]; J = jacobian(f, (P, M, L, G)); # Equilibrium solution: M4 =((alpha1*alpha2 + alpha1*beta2)*c1*c2*k1*mu1*mu2 + (alpha1^2*alpha2*c1*phi1 - (alpha1*alpha2*c1*c2*k1 + (alpha1^2*alpha2 + alpha1*alpha2*beta1)*c1)*mu1)*phi2)/(alpha2*c1*c2*k1*k2*mu1^2 + alpha1^2*alpha2*phi1*phi2); P4 = ((alpha2 + beta2)*c1*c2*k1*mu1^2*mu2 + (alpha1*alpha2*c1*mu1*phi1 - (alpha2*c1*c2*k1 + (alpha1*alpha2 + alpha2*beta1)*c1)*mu1^2)*phi2)/(alpha2*c1*c2*k1*k2*mu1^2 + alpha1^2*alpha2*phi1*phi2); L4 = -((alpha1*alpha2 + alpha2*beta1)*c1*c2*k2*mu1^2*mu2 - alpha1^2*alpha2*c2*mu2*phi1*phi2 - (alpha1*alpha2*c1*c2*k2*mu1*mu2 - (alpha1^2*alpha2 +alpha1^2*beta2)*c2*mu2^2)*phi1)/(alpha2^2*c1*c2*k1*k2*mu1^2 + alpha1^2*alpha2^2*phi1*phi2); G4 = -((alpha1*alpha2 + alpha2*beta1)*c1*c2*k2*mu1^2 - alpha1^2*alpha2*c2*phi1*phi2 -(alpha1*alpha2*c1*c2*k2*mu1 - (alpha1^2*alpha2 + alpha1^2*beta2)*c2*mu2)*phi1)/(alpha2*c1*c2*k1*k2*mu1^2 + alpha1^2*alpha2*phi1*phi2); # Now I evaluate it at the fixed point: J4 = J(P=P4, G=G4, M=M4, L=L4) J4 = J4(k2=k2)  Now if I do something like; J4.eigenvalues()  I get an lengthy radical expression. And when computing the eigenvectors: D, P = J4.eigenmatrix_left()  I get an error... Traceback (most recent call last): File "", line 1, in File "_sage_input_129.py", line 10, in exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("RCwgUCA9IEo0LmVpZ2VubWF0cml4X2xlZnQoKQ=="),globals())+"\\n"); execfile(os.path.abspath("___code___.py")) File "", line 1, in File "/tmp/tmpYDeAbA/___code___.py", line 2, in exec compile(u'D, P = J4.eigenmatrix_left() File "", line 1, in File "sage/matrix/matrix2.pyx", line 5617, in sage.matrix.matrix2.Matrix.eigenmatrix_left (build/cythonized/sage/matrix/matrix2.c:39965) IndexError: list index out of range