Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

asked 12 years ago

andi gravatar image

definite integral and indefinite integral different (~Gaussian)

Hello, I get strange behaviour on the following function. It persists when changing constants, but is not present for very simple functions, so any hint for a limit would be appreciated.

Here comes the important and irritating part: f4=f2(a=3,N=0.7);f4 (e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + 3)^2))*y^2 Z=integral(f4,y,100,100);Z.n(digits=5) 9.7000 F=integrate(f4,y);H=F(y=10)F(y=10);H.n(digits=5) -1.1562e-14

I guess it is not important, but the part mentioned above is prepared with $f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1$ e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N) $f2 = f1y^2; f2$ (e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N))y^2

click to hide/show revision 2
No.2 Revision

definite integral and indefinite integral different (~Gaussian)

Hello, I get strange behaviour on the following function. It persists when changing constants, but is not present for very simple functions, so any hint for a limit would be appreciated.

Here comes the important and irritating part: part:

$f4 = f2(a=3,N=0.7); f4$ (e^(-0.714285714285714f4$

$(e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + 3)^2))*y^2 3)^2))*y^2$

$Z = integral(f4,y,-100,100); Z.n(digits=5)$ 9.7000 Z.n(digits=5)$

9.7000

$F = integrate(f4,y); H = F(y=10) - F(y=-10); H.n(digits=5)$ -1.1562e-14

H.n(digits=5)$

1.1562e14

I guess it is not important, but the part mentioned above is prepared with $f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1$ e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N) $f2 = f1y^2; f2$ (e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N))y^2

click to hide/show revision 3
No.3 Revision

definite integral and indefinite integral different (~Gaussian)

Hello, I get strange behaviour on the following function. It persists when changing constants, but is not present for very simple functions, so any hint for a limit would be appreciated.

Here comes the important and irritating part:

f4=f2(a=3,N=0.7);f4

$(e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + + 3)^2))*y^2$

Z=integral(f4,y,100,100);Z.n(digits=5)

9.7000

F=integrate(f4,y);H=F(y=10)F(y=10);H.n(digits=5)

1.1562e14

I guess it is not important, but the part mentioned above is prepared with $f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1$ e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N) $f2 = f1y^2; f2$ (e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N))y^2

click to hide/show revision 4
No.4 Revision

definite integral and indefinite integral different (~Gaussian)

Hello, I get strange behaviour on the following function. It persists when changing constants, but is not present for very simple functions, so any hint for a limit would be appreciated.

Here comes the important and irritating part:

f4=f2(a=3,N=0.7);f4

$(e^(-0.714285714285714(e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + 3)^2))*y^2$3)^2))*y^2

Z=integral(f4,y,100,100);Z.n(digits=5)

9.70009.7000

F=integrate(f4,y);H=F(y=10)F(y=10);H.n(digits=5)

1.1562e14-1.1562e-14

I guess it is not important, clear even so, but here is the part before what is mentioned above is prepared with above:

$f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1$ f1$

e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N) y)^2/N)

$f2 = f1y^2; f2$ f1*y^2; f2$

(e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N))y^2

(a + y)^2/N))*y^2

click to hide/show revision 5
No.5 Revision

definite integral and indefinite integral different (~Gaussian)

Hello, I get strange behaviour on the following function. It persists when changing constants, but is not present for very simple functions, so any hint for a limit would be appreciated.

Here comes the important and irritating part:

f4=f2(a=3,N=0.7);f4

(e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + 3)^2))*y^2

Z=integral(f4,y,100,100);Z.n(digits=5)

9.7000

F=integrate(f4,y);H=F(y=10)F(y=10);H.n(digits=5)

-1.1562e-14-2.4622e-2917

I guess it is clear even so, but here is the part before what is mentioned above:

$f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1$

e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N)

f2=f1y2;f2

(e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N))*y^2

f4=f2(a=3,N=0.7);f4

(e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + 3)^2))*y^2

click to hide/show revision 6
No.6 Revision

definite integral and indefinite integral different (~Gaussian)

Hello, I get strange behaviour on the following function. It persists when changing constants, but is not present for very simple functions, so any hint for a limit would be appreciated.

Here comes the important and irritating part:

$f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1$

f2=f1y2;f2

f4=f2(a=3,N=0.7);f4

(e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + 3)^2))*y^2

Z=integral(f4,y,100,100);Z.n(digits=5)

9.7000

F=integrate(f4,y);H=F(y=10)F(y=10);H.n(digits=5)

-2.4622e-2917

As you see, I guess get right results when using the definite integral, while calculation the indefinite integral and manually evaluating it is clear even so, but here is the part before what is mentioned above:

$f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1$

e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N)

f2=f1y2;f2

(e^(-1/2(a - y)^2/N) + e^(-1/2(a + y)^2/N))*y^2

f4=f2(a=3,N=0.7);f4

(e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + 3)^2))*y^2

gains wrong results.

By the way, when integrating from -inf to inf, I should get N+a^2. Is there any way to see this?

click to hide/show revision 7
No.7 Revision

definite integral and indefinite integral different (~Gaussian)

Hello, I get strange behaviour on the following function. It persists when changing constants, but is not present for very simple functions, so any hint for a limit would be appreciated.

$f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1$

f2=f1y2;f2

f4=f2(a=3,N=0.7);f4

(e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + 3)^2))*y^2

Z=integral(f4,y,100,100);Z.n(digits=5)

9.7000

$F = integrate(f4,y); H = F(y=10) F(y=100) - F(y=-10); F(y=-100); H.n(digits=5)$

-2.4622e-2917

As you see, I get right results when using the definite integral, while calculation the indefinite integral and manually evaluating it gains wrong results.

By the way, when integrating from -inf to inf, I should get N+a^2. Is there any way to see this?

click to hide/show revision 8
No.8 Revision

definite integral and indefinite integral different (~Gaussian)

Hello, I get strange behaviour on the following function. It persists when changing constants, but is not present for very simple functions, so any hint for a limit would be appreciated.

$f1

f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1$

$f2 f1

f2 = f1*y^2; f2$

$f4 f2

f4 = f2(a=3,N=0.7); f4$

f4

(e^(-0.714285714285714(y - 3)^2) + e^(-0.714285714285714(y + 3)^2))*y^2

$Z

Z = integral(f4,y,-100,100); Z.n(digits=5)$

Z.n(digits=5)

9.7000

$F

F = integrate(f4,y); H = F(y=100) - F(y=-100); H.n(digits=5)$

H.n(digits=5)

-2.4622e-2917

As you see, I get right results when using the definite integral, while calculation the indefinite integral and manually evaluating it gains wrong results.

By the way, when integrating from -inf to inf, I should get N+a^2. Is there any way to see this?

click to hide/show revision 9
No.9 Revision

updated 12 years ago

calc314 gravatar image

definite integral and indefinite integral different (~Gaussian)

Hello, I get strange behaviour on the following function. It persists when changing constants, but is not present for very simple functions, so any hint for a limit would be appreciated.

 f1 = exp(-1/2(y-a)^2/N)+exp(-1/2(y+a)^2/N); f1

exp(-1/2*(y-a)^2/N)+exp(-1/2*(y+a)^2/N); f1

f2 = f1*y^2; f2

f2

f4 = f2(a=3,N=0.7); f4

(e^(-0.714285714285714(y f4 >(e^(-0.714285714285714*(y - 3)^2) + e^(-0.714285714285714(y e^(-0.714285714285714*(y + 3)^2))*y^2

3)^2))*y^2

Z = integral(f4,y,-100,100); Z.n(digits=5)

Z.n(digits=5) >9.7000

9.7000

F = integrate(f4,y); H = F(y=100) - F(y=-100); H.n(digits=5)

H.n(digits=5) >-2.4622e-2917

-2.4622e-2917

As you see, I get right results when using the definite integral, while calculation the indefinite integral and manually evaluating it gains wrong results.

By the way, when integrating from -inf to inf, I should get N+a^2. N+a^2. Is there any way to see this?