After a lengthy bit of coding,
var('r,t')
eq = [corr[1][1].subs({r_11:r,t_12:t,t_13:t,t_21:t,r_22:r,t_23:t,t_31:t,t_32:t,r_33:r})==0]
solve(eq,r,t)
yields
$$ \newcommand{\Bold}[1]{\mathbf{#1}}\left(\left[r = -\sqrt{-\frac{\alpha_{1} t^{2}}{\alpha_{2}} - \frac{\alpha_{3} t^{2}}{\alpha_{2}} + 1}, r = \sqrt{-\frac{\alpha_{1} t^{2}}{\alpha_{2}} - \frac{\alpha_{3} t^{2}}{\alpha_{2}} + 1}, r = 0\right], \left[1, 1, 1\right]\right)$$
Note that the second element of the output is just [1,1,1]
, instead of t==1
. Can someone help with interpreting this?