Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

How does sagemath solve X*a*b+Y*a+Y*b+Z mod N = 0 knowing X,Y,Z,N without factoring N? Is there a computationally efficient way to solve this?

If N=(6a+1)(6*b+1)

C=(N-1)/6

A=(2*C^2+C) mod N

B=N-A

(-16C^2-8C-1) mod N =X

(-B+16C^3+6C^2) mod N =Y

(-12C^4-4C^3+A*B) mod N=Z

we get

Xab+Ya+Yb+Z=N*W

so

Xab+Ya+Yb+Z mod N = 0

How does sagemath solve Xab+Ya+Yb+Z mod N = 0 knowing X,Y,Z,N without factoring N? Is there a computationally efficient way to solve this?

Example: N=403=13*31

179ab+97a+97b+352 mod 403 = 0