Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Implementing linear maps and their inverses in SageMath and Magma

I am currently trying to implement the linear maps in this post: https://math.stackexchange.com/questions/5015461/computing-the-inverses-of-two-linear-maps in Magma and SageMath. So far I have successfully implemented the maps in Magma and am currently trying to implement $X$ in SageMath.

My Magma code for $X$:

k := 8;
Fq := GF(2^k);
F := FunctionField(Fq);
places := Places(F, 1);
G := &+[places[i]: i in [2..k]];
B1 := Basis(G);
places := [places[i]: i in [k+1..2*k]];
X_matrix := Matrix([[Evaluate(f, P): P in places]: f in B1]);
X := function(f)
  return Vector([Evaluate(f, P) : P in places]);
end function;
X_inv := function(v)
   coeffs:= Solution(X_matrix, v);
   return &+[coeffs[i] * B1[i]: i in [1..k]];
end function;

My SageMath code for $X$:

k = 8
m = 16
Fq = GF(2^k)
F.<x> = FunctionField(Fq)
places = F.places()
G = sum(places[i] for i in range(1,k))
B1 = list(reversed(G.basis_function_space()))
places = places[k:2*k]
X_matrix = matrix([[f.evaluate(p) for p in places] for f in B1])
def X(f):
    return vector([f.evaluate(p) for p in places])
def X_inv(v):
    coeffs = X_matrix.solve_right(v)
    return sum(coeff * b for coeff, b in zip(coeffs, B1))

$X$ does not work correctly in SageMath. I have noticed that v, B1, and X_matrix are symbolically represented in Magma with F's generator inside X_inv rather than Fq's as they are outside.

v:

outside X_inv:

(1  Fq.1^25  Fq.1^50 Fq.1^198 Fq.1^223 Fq.1^238 Fq.1^104  Fq.1^75)

inside X_inv:

(1  $.1^25  $.1^50 $.1^198 $.1^223 $.1^238 $.1^104  $.1^75)

B1:

outside X_inv:

[
    ($.1)^-1 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 + Fq.1^4)^-1
    * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1) * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^2 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^3 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^4 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^5 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^6 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1
]

inside X_inv:

[
    ($.1)^-1 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 + $.1^4)^-1 *
    ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1) * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^2 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^3 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^4 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^5 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^6 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1
]

X_matrix:

outside X_inv:

[ Fq.1^10 Fq.1^177  Fq.1^26 Fq.1^128 Fq.1^206  Fq.1^98 Fq.1^161 Fq.1^173]
[ Fq.1^17 Fq.1^185  Fq.1^35 Fq.1^138 Fq.1^217 Fq.1^110 Fq.1^174 Fq.1^187]
[ Fq.1^24 Fq.1^193  Fq.1^44 Fq.1^148 Fq.1^228 Fq.1^122 Fq.1^187 Fq.1^201]
[ Fq.1^31 Fq.1^201  Fq.1^53 Fq.1^158 Fq.1^239 Fq.1^134 Fq.1^200 Fq.1^215]
[ Fq.1^38 Fq.1^209  Fq.1^62 Fq.1^168 Fq.1^250 Fq.1^146 Fq.1^213 Fq.1^229]
[ Fq.1^45 Fq.1^217  Fq.1^71 Fq.1^178   Fq.1^6 Fq.1^158 Fq.1^226 Fq.1^243]
[ Fq.1^52 Fq.1^225  Fq.1^80 Fq.1^188  Fq.1^17 Fq.1^170 Fq.1^239   Fq.1^2]
[ Fq.1^59 Fq.1^233  Fq.1^89 Fq.1^198  Fq.1^28 Fq.1^182 Fq.1^252  Fq.1^16]

inside X_inv:

[ $.1^10 $.1^177  $.1^26 $.1^128 $.1^206  $.1^98 $.1^161 $.1^173]
[ $.1^17 $.1^185  $.1^35 $.1^138 $.1^217 $.1^110 $.1^174 $.1^187]
[ $.1^24 $.1^193  $.1^44 $.1^148 $.1^228 $.1^122 $.1^187 $.1^201]
[ $.1^31 $.1^201  $.1^53 $.1^158 $.1^239 $.1^134 $.1^200 $.1^215]
[ $.1^38 $.1^209  $.1^62 $.1^168 $.1^250 $.1^146 $.1^213 $.1^229]
[ $.1^45 $.1^217  $.1^71 $.1^178   $.1^6 $.1^158 $.1^226 $.1^243]
[ $.1^52 $.1^225  $.1^80 $.1^188  $.1^17 $.1^170 $.1^239   $.1^2]
[ $.1^59 $.1^233  $.1^89 $.1^198  $.1^28 $.1^182 $.1^252  $.1^16]

I have figured out how to symbolically represent X_matrix and v similarly in SageMath but am unsure how to do so with B1.

B1 in SageMath:

[
1/(x^7 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^6 + z8^2*x^5 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^4 + (z8^5 + z8^4 + z8^3 + z8)*x^3 + (z8^5 + z8^4 + 1)*x^2 + (z8^6 + z8^5 + z8^4 + z8^2 + 1)*x), 
1/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^2/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^3/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^4/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^5/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^6/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1)
]

Any help would be much appreciated.

click to hide/show revision 2
retagged

Implementing linear maps and their inverses in SageMath and Magma

I am currently trying to implement the linear maps in this post: https://math.stackexchange.com/questions/5015461/computing-the-inverses-of-two-linear-maps in Magma and SageMath. So far I have successfully implemented the maps in Magma and am currently trying to implement $X$ in SageMath.

My Magma code for $X$:

k := 8;
Fq := GF(2^k);
F := FunctionField(Fq);
places := Places(F, 1);
G := &+[places[i]: i in [2..k]];
B1 := Basis(G);
places := [places[i]: i in [k+1..2*k]];
X_matrix := Matrix([[Evaluate(f, P): P in places]: f in B1]);
X := function(f)
  return Vector([Evaluate(f, P) : P in places]);
end function;
X_inv := function(v)
   coeffs:= Solution(X_matrix, v);
   return &+[coeffs[i] * B1[i]: i in [1..k]];
end function;

My SageMath code for $X$:

k = 8
m = 16
Fq = GF(2^k)
F.<x> = FunctionField(Fq)
places = F.places()
G = sum(places[i] for i in range(1,k))
B1 = list(reversed(G.basis_function_space()))
places = places[k:2*k]
X_matrix = matrix([[f.evaluate(p) for p in places] for f in B1])
def X(f):
    return vector([f.evaluate(p) for p in places])
def X_inv(v):
    coeffs = X_matrix.solve_right(v)
    return sum(coeff * b for coeff, b in zip(coeffs, B1))

$X$ does not work correctly in SageMath. I have noticed that v, B1, and X_matrix are symbolically represented in Magma with F's generator inside X_inv rather than Fq's as they are outside.

v:

outside X_inv:

(1  Fq.1^25  Fq.1^50 Fq.1^198 Fq.1^223 Fq.1^238 Fq.1^104  Fq.1^75)

inside X_inv:

(1  $.1^25  $.1^50 $.1^198 $.1^223 $.1^238 $.1^104  $.1^75)

B1:

outside X_inv:

[
    ($.1)^-1 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 + Fq.1^4)^-1
    * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1) * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^2 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^3 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^4 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^5 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^6 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1
]

inside X_inv:

[
    ($.1)^-1 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 + $.1^4)^-1 *
    ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1) * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^2 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^3 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^4 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^5 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^6 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1
]

X_matrix:

outside X_inv:

[ Fq.1^10 Fq.1^177  Fq.1^26 Fq.1^128 Fq.1^206  Fq.1^98 Fq.1^161 Fq.1^173]
[ Fq.1^17 Fq.1^185  Fq.1^35 Fq.1^138 Fq.1^217 Fq.1^110 Fq.1^174 Fq.1^187]
[ Fq.1^24 Fq.1^193  Fq.1^44 Fq.1^148 Fq.1^228 Fq.1^122 Fq.1^187 Fq.1^201]
[ Fq.1^31 Fq.1^201  Fq.1^53 Fq.1^158 Fq.1^239 Fq.1^134 Fq.1^200 Fq.1^215]
[ Fq.1^38 Fq.1^209  Fq.1^62 Fq.1^168 Fq.1^250 Fq.1^146 Fq.1^213 Fq.1^229]
[ Fq.1^45 Fq.1^217  Fq.1^71 Fq.1^178   Fq.1^6 Fq.1^158 Fq.1^226 Fq.1^243]
[ Fq.1^52 Fq.1^225  Fq.1^80 Fq.1^188  Fq.1^17 Fq.1^170 Fq.1^239   Fq.1^2]
[ Fq.1^59 Fq.1^233  Fq.1^89 Fq.1^198  Fq.1^28 Fq.1^182 Fq.1^252  Fq.1^16]

inside X_inv:

[ $.1^10 $.1^177  $.1^26 $.1^128 $.1^206  $.1^98 $.1^161 $.1^173]
[ $.1^17 $.1^185  $.1^35 $.1^138 $.1^217 $.1^110 $.1^174 $.1^187]
[ $.1^24 $.1^193  $.1^44 $.1^148 $.1^228 $.1^122 $.1^187 $.1^201]
[ $.1^31 $.1^201  $.1^53 $.1^158 $.1^239 $.1^134 $.1^200 $.1^215]
[ $.1^38 $.1^209  $.1^62 $.1^168 $.1^250 $.1^146 $.1^213 $.1^229]
[ $.1^45 $.1^217  $.1^71 $.1^178   $.1^6 $.1^158 $.1^226 $.1^243]
[ $.1^52 $.1^225  $.1^80 $.1^188  $.1^17 $.1^170 $.1^239   $.1^2]
[ $.1^59 $.1^233  $.1^89 $.1^198  $.1^28 $.1^182 $.1^252  $.1^16]

I have figured out how to symbolically represent X_matrix and v similarly in SageMath but am unsure how to do so with B1.

B1 in SageMath:

[
1/(x^7 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^6 + z8^2*x^5 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^4 + (z8^5 + z8^4 + z8^3 + z8)*x^3 + (z8^5 + z8^4 + 1)*x^2 + (z8^6 + z8^5 + z8^4 + z8^2 + 1)*x), 
1/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^2/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^3/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^4/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^5/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^6/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1)
]

Any help would be much appreciated.

click to hide/show revision 3
retagged

Implementing linear maps and their inverses in SageMath and Magma

I am currently trying to implement the linear maps in this post: https://math.stackexchange.com/questions/5015461/computing-the-inverses-of-two-linear-maps in Magma and SageMath. So far I have successfully implemented the maps in Magma and am currently trying to implement $X$ in SageMath.

My Magma code for $X$:

k := 8;
Fq := GF(2^k);
F := FunctionField(Fq);
places := Places(F, 1);
G := &+[places[i]: i in [2..k]];
B1 := Basis(G);
places := [places[i]: i in [k+1..2*k]];
X_matrix := Matrix([[Evaluate(f, P): P in places]: f in B1]);
X := function(f)
  return Vector([Evaluate(f, P) : P in places]);
end function;
X_inv := function(v)
   coeffs:= Solution(X_matrix, v);
   return &+[coeffs[i] * B1[i]: i in [1..k]];
end function;

My SageMath code for $X$:

k = 8
m = 16
Fq = GF(2^k)
F.<x> = FunctionField(Fq)
places = F.places()
G = sum(places[i] for i in range(1,k))
B1 = list(reversed(G.basis_function_space()))
places = places[k:2*k]
X_matrix = matrix([[f.evaluate(p) for p in places] for f in B1])
def X(f):
    return vector([f.evaluate(p) for p in places])
def X_inv(v):
    coeffs = X_matrix.solve_right(v)
    return sum(coeff * b for coeff, b in zip(coeffs, B1))

$X$ does not work correctly in SageMath. I have noticed that v, B1, and X_matrix are symbolically represented in Magma with F's generator inside X_inv rather than Fq's as they are outside.

v:

outside X_inv:

(1  Fq.1^25  Fq.1^50 Fq.1^198 Fq.1^223 Fq.1^238 Fq.1^104  Fq.1^75)

inside X_inv:

(1  $.1^25  $.1^50 $.1^198 $.1^223 $.1^238 $.1^104  $.1^75)

B1:

outside X_inv:

[
    ($.1)^-1 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 + Fq.1^4)^-1
    * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1) * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^2 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^3 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^4 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^5 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^6 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1
]

inside X_inv:

[
    ($.1)^-1 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 + $.1^4)^-1 *
    ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1) * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^2 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^3 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^4 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^5 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^6 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1
]

X_matrix:

outside X_inv:

[ Fq.1^10 Fq.1^177  Fq.1^26 Fq.1^128 Fq.1^206  Fq.1^98 Fq.1^161 Fq.1^173]
[ Fq.1^17 Fq.1^185  Fq.1^35 Fq.1^138 Fq.1^217 Fq.1^110 Fq.1^174 Fq.1^187]
[ Fq.1^24 Fq.1^193  Fq.1^44 Fq.1^148 Fq.1^228 Fq.1^122 Fq.1^187 Fq.1^201]
[ Fq.1^31 Fq.1^201  Fq.1^53 Fq.1^158 Fq.1^239 Fq.1^134 Fq.1^200 Fq.1^215]
[ Fq.1^38 Fq.1^209  Fq.1^62 Fq.1^168 Fq.1^250 Fq.1^146 Fq.1^213 Fq.1^229]
[ Fq.1^45 Fq.1^217  Fq.1^71 Fq.1^178   Fq.1^6 Fq.1^158 Fq.1^226 Fq.1^243]
[ Fq.1^52 Fq.1^225  Fq.1^80 Fq.1^188  Fq.1^17 Fq.1^170 Fq.1^239   Fq.1^2]
[ Fq.1^59 Fq.1^233  Fq.1^89 Fq.1^198  Fq.1^28 Fq.1^182 Fq.1^252  Fq.1^16]

inside X_inv:

[ $.1^10 $.1^177  $.1^26 $.1^128 $.1^206  $.1^98 $.1^161 $.1^173]
[ $.1^17 $.1^185  $.1^35 $.1^138 $.1^217 $.1^110 $.1^174 $.1^187]
[ $.1^24 $.1^193  $.1^44 $.1^148 $.1^228 $.1^122 $.1^187 $.1^201]
[ $.1^31 $.1^201  $.1^53 $.1^158 $.1^239 $.1^134 $.1^200 $.1^215]
[ $.1^38 $.1^209  $.1^62 $.1^168 $.1^250 $.1^146 $.1^213 $.1^229]
[ $.1^45 $.1^217  $.1^71 $.1^178   $.1^6 $.1^158 $.1^226 $.1^243]
[ $.1^52 $.1^225  $.1^80 $.1^188  $.1^17 $.1^170 $.1^239   $.1^2]
[ $.1^59 $.1^233  $.1^89 $.1^198  $.1^28 $.1^182 $.1^252  $.1^16]

I have figured out how to symbolically represent X_matrix and v similarly in SageMath but am unsure how to do so with B1.

B1 in SageMath:

[
1/(x^7 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^6 + z8^2*x^5 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^4 + (z8^5 + z8^4 + z8^3 + z8)*x^3 + (z8^5 + z8^4 + 1)*x^2 + (z8^6 + z8^5 + z8^4 + z8^2 + 1)*x), 
1/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^2/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^3/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^4/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^5/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^6/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1)
]

Any help would be much appreciated.

click to hide/show revision 4
retagged

Implementing linear maps and their inverses in SageMath and Magma

I am currently trying to implement the linear maps in this post: https://math.stackexchange.com/questions/5015461/computing-the-inverses-of-two-linear-maps in Magma and SageMath. So far I have successfully implemented the maps in Magma and am currently trying to implement $X$ in SageMath.

My Magma code for $X$:

k := 8;
Fq := GF(2^k);
F := FunctionField(Fq);
places := Places(F, 1);
G := &+[places[i]: i in [2..k]];
B1 := Basis(G);
places := [places[i]: i in [k+1..2*k]];
X_matrix := Matrix([[Evaluate(f, P): P in places]: f in B1]);
X := function(f)
  return Vector([Evaluate(f, P) : P in places]);
end function;
X_inv := function(v)
   coeffs:= Solution(X_matrix, v);
   return &+[coeffs[i] * B1[i]: i in [1..k]];
end function;

My SageMath code for $X$:

k = 8
m = 16
Fq = GF(2^k)
F.<x> = FunctionField(Fq)
places = F.places()
G = sum(places[i] for i in range(1,k))
B1 = list(reversed(G.basis_function_space()))
places = places[k:2*k]
X_matrix = matrix([[f.evaluate(p) for p in places] for f in B1])
def X(f):
    return vector([f.evaluate(p) for p in places])
def X_inv(v):
    coeffs = X_matrix.solve_right(v)
    return sum(coeff * b for coeff, b in zip(coeffs, B1))

$X$ does not work correctly in SageMath. I have noticed that v, B1, and X_matrix are symbolically represented in Magma with F's generator inside X_inv rather than Fq's as they are outside.

v:

outside X_inv:

(1  Fq.1^25  Fq.1^50 Fq.1^198 Fq.1^223 Fq.1^238 Fq.1^104  Fq.1^75)

inside X_inv:

(1  $.1^25  $.1^50 $.1^198 $.1^223 $.1^238 $.1^104  $.1^75)

B1:

outside X_inv:

[
    ($.1)^-1 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 + Fq.1^4)^-1
    * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1) * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^2 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^3 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^4 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^5 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^6 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1
]

inside X_inv:

[
    ($.1)^-1 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 + $.1^4)^-1 *
    ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1) * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^2 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^3 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^4 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^5 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^6 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1
]

X_matrix:

outside X_inv:

[ Fq.1^10 Fq.1^177  Fq.1^26 Fq.1^128 Fq.1^206  Fq.1^98 Fq.1^161 Fq.1^173]
[ Fq.1^17 Fq.1^185  Fq.1^35 Fq.1^138 Fq.1^217 Fq.1^110 Fq.1^174 Fq.1^187]
[ Fq.1^24 Fq.1^193  Fq.1^44 Fq.1^148 Fq.1^228 Fq.1^122 Fq.1^187 Fq.1^201]
[ Fq.1^31 Fq.1^201  Fq.1^53 Fq.1^158 Fq.1^239 Fq.1^134 Fq.1^200 Fq.1^215]
[ Fq.1^38 Fq.1^209  Fq.1^62 Fq.1^168 Fq.1^250 Fq.1^146 Fq.1^213 Fq.1^229]
[ Fq.1^45 Fq.1^217  Fq.1^71 Fq.1^178   Fq.1^6 Fq.1^158 Fq.1^226 Fq.1^243]
[ Fq.1^52 Fq.1^225  Fq.1^80 Fq.1^188  Fq.1^17 Fq.1^170 Fq.1^239   Fq.1^2]
[ Fq.1^59 Fq.1^233  Fq.1^89 Fq.1^198  Fq.1^28 Fq.1^182 Fq.1^252  Fq.1^16]

inside X_inv:

[ $.1^10 $.1^177  $.1^26 $.1^128 $.1^206  $.1^98 $.1^161 $.1^173]
[ $.1^17 $.1^185  $.1^35 $.1^138 $.1^217 $.1^110 $.1^174 $.1^187]
[ $.1^24 $.1^193  $.1^44 $.1^148 $.1^228 $.1^122 $.1^187 $.1^201]
[ $.1^31 $.1^201  $.1^53 $.1^158 $.1^239 $.1^134 $.1^200 $.1^215]
[ $.1^38 $.1^209  $.1^62 $.1^168 $.1^250 $.1^146 $.1^213 $.1^229]
[ $.1^45 $.1^217  $.1^71 $.1^178   $.1^6 $.1^158 $.1^226 $.1^243]
[ $.1^52 $.1^225  $.1^80 $.1^188  $.1^17 $.1^170 $.1^239   $.1^2]
[ $.1^59 $.1^233  $.1^89 $.1^198  $.1^28 $.1^182 $.1^252  $.1^16]

I have figured out how to symbolically represent X_matrix and v similarly in SageMath but am unsure how to do so with B1.

B1 in SageMath:

[
1/(x^7 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^6 + z8^2*x^5 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^4 + (z8^5 + z8^4 + z8^3 + z8)*x^3 + (z8^5 + z8^4 + 1)*x^2 + (z8^6 + z8^5 + z8^4 + z8^2 + 1)*x), 
1/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^2/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^3/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^4/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^5/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^6/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1)
]

Any help would be much appreciated.

click to hide/show revision 5
retagged

Implementing linear maps and their inverses in SageMath and Magma

I am currently trying to implement the linear maps in this post: https://math.stackexchange.com/questions/5015461/computing-the-inverses-of-two-linear-maps in Magma and SageMath. So far I have successfully implemented the maps in Magma and am currently trying to implement $X$ in SageMath.

My Magma code for $X$:

k := 8;
Fq := GF(2^k);
F := FunctionField(Fq);
places := Places(F, 1);
G := &+[places[i]: i in [2..k]];
B1 := Basis(G);
places := [places[i]: i in [k+1..2*k]];
X_matrix := Matrix([[Evaluate(f, P): P in places]: f in B1]);
X := function(f)
  return Vector([Evaluate(f, P) : P in places]);
end function;
X_inv := function(v)
   coeffs:= Solution(X_matrix, v);
   return &+[coeffs[i] * B1[i]: i in [1..k]];
end function;

My SageMath code for $X$:

k = 8
m = 16
Fq = GF(2^k)
F.<x> = FunctionField(Fq)
places = F.places()
G = sum(places[i] for i in range(1,k))
B1 = list(reversed(G.basis_function_space()))
places = places[k:2*k]
X_matrix = matrix([[f.evaluate(p) for p in places] for f in B1])
def X(f):
    return vector([f.evaluate(p) for p in places])
def X_inv(v):
    coeffs = X_matrix.solve_right(v)
    return sum(coeff * b for coeff, b in zip(coeffs, B1))

$X$ does not work correctly in SageMath. I have noticed that v, B1, and X_matrix are symbolically represented in Magma with F's generator inside X_inv rather than Fq's as they are outside.

v:

outside X_inv:

(1  Fq.1^25  Fq.1^50 Fq.1^198 Fq.1^223 Fq.1^238 Fq.1^104  Fq.1^75)

inside X_inv:

(1  $.1^25  $.1^50 $.1^198 $.1^223 $.1^238 $.1^104  $.1^75)

B1:

outside X_inv:

[
    ($.1)^-1 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 + Fq.1^4)^-1
    * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1) * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^2 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^3 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^4 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^5 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1,
    ($.1)^6 * ($.1 + Fq.1)^-1 * ($.1 + Fq.1^2)^-1 * ($.1 + Fq.1^3)^-1 * ($.1 +
        Fq.1^4)^-1 * ($.1 + Fq.1^5)^-1 * ($.1 + Fq.1^6)^-1
]

inside X_inv:

[
    ($.1)^-1 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 + $.1^4)^-1 *
    ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1) * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^2 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^3 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^4 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^5 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1,
    ($.1)^6 * ($.1 + $.1)^-1 * ($.1 + $.1^2)^-1 * ($.1 + $.1^3)^-1 * ($.1 +
        $.1^4)^-1 * ($.1 + $.1^5)^-1 * ($.1 + $.1^6)^-1
]

X_matrix:

outside X_inv:

[ Fq.1^10 Fq.1^177  Fq.1^26 Fq.1^128 Fq.1^206  Fq.1^98 Fq.1^161 Fq.1^173]
[ Fq.1^17 Fq.1^185  Fq.1^35 Fq.1^138 Fq.1^217 Fq.1^110 Fq.1^174 Fq.1^187]
[ Fq.1^24 Fq.1^193  Fq.1^44 Fq.1^148 Fq.1^228 Fq.1^122 Fq.1^187 Fq.1^201]
[ Fq.1^31 Fq.1^201  Fq.1^53 Fq.1^158 Fq.1^239 Fq.1^134 Fq.1^200 Fq.1^215]
[ Fq.1^38 Fq.1^209  Fq.1^62 Fq.1^168 Fq.1^250 Fq.1^146 Fq.1^213 Fq.1^229]
[ Fq.1^45 Fq.1^217  Fq.1^71 Fq.1^178   Fq.1^6 Fq.1^158 Fq.1^226 Fq.1^243]
[ Fq.1^52 Fq.1^225  Fq.1^80 Fq.1^188  Fq.1^17 Fq.1^170 Fq.1^239   Fq.1^2]
[ Fq.1^59 Fq.1^233  Fq.1^89 Fq.1^198  Fq.1^28 Fq.1^182 Fq.1^252  Fq.1^16]

inside X_inv:

[ $.1^10 $.1^177  $.1^26 $.1^128 $.1^206  $.1^98 $.1^161 $.1^173]
[ $.1^17 $.1^185  $.1^35 $.1^138 $.1^217 $.1^110 $.1^174 $.1^187]
[ $.1^24 $.1^193  $.1^44 $.1^148 $.1^228 $.1^122 $.1^187 $.1^201]
[ $.1^31 $.1^201  $.1^53 $.1^158 $.1^239 $.1^134 $.1^200 $.1^215]
[ $.1^38 $.1^209  $.1^62 $.1^168 $.1^250 $.1^146 $.1^213 $.1^229]
[ $.1^45 $.1^217  $.1^71 $.1^178   $.1^6 $.1^158 $.1^226 $.1^243]
[ $.1^52 $.1^225  $.1^80 $.1^188  $.1^17 $.1^170 $.1^239   $.1^2]
[ $.1^59 $.1^233  $.1^89 $.1^198  $.1^28 $.1^182 $.1^252  $.1^16]

I have figured out how to symbolically represent X_matrix and v similarly in SageMath but am unsure how to do so with B1.

B1 in SageMath:

[
1/(x^7 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^6 + z8^2*x^5 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^4 + (z8^5 + z8^4 + z8^3 + z8)*x^3 + (z8^5 + z8^4 + 1)*x^2 + (z8^6 + z8^5 + z8^4 + z8^2 + 1)*x), 
1/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^2/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^3/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^4/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^5/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1), 
x^6/(x^6 + (z8^6 + z8^5 + z8^4 + z8^3 + z8^2 + z8)*x^5 + z8^2*x^4 + (z8^7 + z8^4 + z8^3 + z8^2 + z8)*x^3 + (z8^5 + z8^4 + z8^3 + z8)*x^2 + (z8^5 + z8^4 + 1)*x + z8^6 + z8^5 + z8^4 + z8^2 + 1)
]

Any help would be much appreciated.