y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Please help me translate this into SAGE. Thank You!!
![]() | 1 | initial version |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Please help me translate this into SAGE. Thank You!!
![]() | 2 | No.2 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means ∫1−1f(x)dx
Please help me translate this into SAGE. Thank You!!
![]() | 3 | No.3 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means ∫1−1f(x)dx
Please help me translate this into SAGE. Thank You!!
![]() | 4 | Back to original |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means ∫1−1f(x)dx
Please help me translate this into SAGE. Thank You!!
![]() | 5 | No.5 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means ∫1−1f(x)dx
Please help me translate this into SAGE. Thank You!!
![]() | 6 | No.6 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x];
z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means ∫1−1f(x)dx
Please help me translate this into SAGE. Thank You!!
![]() | 7 | No.7 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means ∫1−1f(x)dx
Please help me translate this into SAGE. Thank You!!