y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Please help me translate this into SAGE. Thank You!!
1 | initial version |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Please help me translate this into SAGE. Thank You!!
2 | No.2 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means $$\int_{-1}^1 f(x)\;dx$$
Please help me translate this into SAGE. Thank You!!
3 | No.3 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means $$\int_{-1}^1 f(x)\;dx$$
Please help me translate this into SAGE. Thank You!!
4 | Back to original |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means $$\int_{-1}^1 f(x)\;dx$$
Please help me translate this into SAGE. Thank You!!
5 | No.5 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means $$\int_{-1}^1 f(x)\;dx$$
Please help me translate this into SAGE. Thank You!!
6 | No.6 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x];
z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means $$\int_{-1}^1 f(x)\;dx$$
Please help me translate this into SAGE. Thank You!!
7 | No.7 Revision |
y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);
and
NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]
Edit: I think the OP means $$\int_{-1}^1 f(x)\;dx$$
Please help me translate this into SAGE. Thank You!!