Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

asked 14 years ago

Sagud gravatar image

MATHEMATICA TO SAGE

y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);

and

NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]

Please help me translate this into SAGE. Thank You!!

click to hide/show revision 2
No.2 Revision

updated 14 years ago

kcrisman gravatar image

MATHEMATICA TO SAGE

y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);

and

NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]

Edit: I think the OP means 11f(x)dx

Please help me translate this into SAGE. Thank You!!

click to hide/show revision 3
No.3 Revision

MATHEMATICA TO SAGE

y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);

and

NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]

Edit: I think the OP means 11f(x)dx

Please help me translate this into SAGE. Thank You!!

click to hide/show revision 4
Back to original

updated 14 years ago

kcrisman gravatar image

MATHEMATICA TO SAGE

y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);

and

NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]

Edit: I think the OP means 11f(x)dx

Please help me translate this into SAGE. Thank You!!

click to hide/show revision 5
No.5 Revision

MATHEMATICA TO SAGETranslation

y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);

and

NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]

Edit: I think the OP means 11f(x)dx

Please help me translate this into SAGE. Thank You!!

click to hide/show revision 6
No.6 Revision

TranslationTranslation into sage

y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);

and

NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]

Edit: I think the OP means 11f(x)dx

Please help me translate this into SAGE. Thank You!!

click to hide/show revision 7
No.7 Revision

Translation into sageTranslation

y = x /. NSolve[LegendreP[i, x] == 0, x]; z = (2 (1 - y^2))/((i + 1)^2 LegendreP[i + 1, y]^2);

and

NumberForm[N[!( *SubsuperscriptBox[([Integral]), (-1), (1)](f[ x] [DifferentialD]x))], 12]

Edit: I think the OP means 11f(x)dx

Please help me translate this into SAGE. Thank You!!