why integral$(1/x,x)$ returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly, integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$. Can anyone explain?
1 | initial version |
why integral$(1/x,x)$ returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly, integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$. Can anyone explain?
2 | No.2 Revision |
why integral$(1/x,x)$ integral $(1/x,x)$ returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly,
integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$.
Can anyone explain?
3 | No.3 Revision |
why integral $(1/x,x)$ ($1/x,x$) returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly,
integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$.
Can anyone explain?
4 | No.4 Revision |
why integral ($1/x,x$) ($\frac1x$, $x$) returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly,
integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$.
Can anyone explain?
5 | No.5 Revision |
why integral ($\frac1x$, (1/x, $x$) returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly,
integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$.
Can anyone explain?
6 | No.6 Revision |
why integral (1/x, ($ $$1/x$, $x$) returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly,
integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$.
Can anyone explain?
7 | No.7 Revision |
why integral ($ $$1/x$, $x$) returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly, integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$. Can anyone explain?
After previous post, I dig a little bit and find:
sage: equation=integral(1/x+x,x).real()
sage: equation
1/2*real_part(x)^2 - 1/2*imag_part(x)^2 + log(abs(x))
sage:
Now, anyway to set real_part(x)=x and imag_part(x)=0 in "eq" and get the resultant "eq"?
8 | No.8 Revision |
why integral ($ $$1/x$, $x$) returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly, integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$. Can anyone explain?
After previous post, I dig a little bit and find:
sage: equation=integral(1/x+x,x).real()
sage: equation
1/2*real_part(x)^2 - 1/2*imag_part(x)^2 + log(abs(x))
sage:
Now, anyway to set real_part(x)=x and imag_part(x)=0 in "eq" and get the resultant "eq"?
More>>
sage: integral(1/(x^3-1),x).real()
-1/3*sqrt(3)*real_part(arctan(1/3*(2*x + 1)*sqrt(3))) + 1/3*log(abs(x - 1)) - 1/6*log(abs(x^2 + x + 1))
Everything is fine in the above computation except the word "real_part". Anyway to get rid of that?
9 | retagged |
why integral ($ $$1/x$, $x$) returns $log(x)$? Shouldn't it return $log(|x|)$. Similarly, integral$(tan(x),x)$ returns $log(sec(x))$ shouldn't it return $log(|sec(x)|)$. Can anyone explain?
After previous post, I dig a little bit and find:
sage: equation=integral(1/x+x,x).real()
sage: equation
1/2*real_part(x)^2 - 1/2*imag_part(x)^2 + log(abs(x))
sage:
Now, anyway to set real_part(x)=x and imag_part(x)=0 in "eq" and get the resultant "eq"?
More>>
sage: integral(1/(x^3-1),x).real()
-1/3*sqrt(3)*real_part(arctan(1/3*(2*x + 1)*sqrt(3))) + 1/3*log(abs(x - 1)) - 1/6*log(abs(x^2 + x + 1))
Everything is fine in the above computation except the word "real_part". Anyway to get rid of that?