Processing math: 100%
Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

return structure constants of Iwahori-Hecke algebra as a list of pairs

I would like to return the result of multiplication in an Iwahori-Hecke algebra not as the element on the right hand side of CxCy=zhx,y,zCz

but as a list of pairs (z,hx,y,z).

Is this possible? Can this list be created from the usual setup, e.g.

R.<v> = LaurentPolynomialRing(ZZ)
H = IwahoriHeckeAlgebra(['A',2,1], v^2)
W= H.coxeter_group()
s= W.simple_reflections();s
Cp=H.Cp()

Cp.product_on_basis(s[1], s[2]*s[1])
Cp[1,2,1] + Cp[1]

which returns zhx,y,zCz?

return structure constants of Iwahori-Hecke algebra as a list of pairs

I would like to return the result of multiplication in an Iwahori-Hecke algebra not as the element on the right hand side of CxCy=zhx,y,zCz

but as a list of pairs (z,hx,y,z).

Is this possible? It is easy to return a vector of just the coefficients without the index z: Can this list be created from the usual setup, e.g.

R.<v> = LaurentPolynomialRing(ZZ)
H = IwahoriHeckeAlgebra(['A',2,1], v^2)
W= H.coxeter_group()
s= W.simple_reflections();s
Cp=H.Cp()
C=H.C()
 Cp.product_on_basis(s[1], C.product_on_basis(s[1], s[2]*s[1])
Cp[1,2,1] + Cp[1]

(C.product_on_basis(s[1], s[2]*s[1])).coefficients()
[1, 1]

which returns zhx,y,zCz?But how can I also remember the indices z?