Given a quiver representation
A3= DiGraph({1:{2:['a']}, 2:{3:['b']}})
or
A4= DiGraph({1:{2:['a']}, 2:{3:['b']}, 3:{4:['b']}})
do you know a script or an algorithm which can be downloaded or is part of a library to perform knitting for determining the Auslander-Reiten quiver, for simple cases such as above. The above are the Dynkin diagrams of type $\mathbb{A}_3$ and $\mathbb{A}_4$. Knitting is described in A. Schiffler, Quiver Representations, Springer, 2014, p. 70 f. I realize there is a way to calculate the Auslander-Reiten-Translate (https://doc.sagemath.org/html/en/reference/quivers/sage/quivers/representation.html).