Maxima eliminate with ugly _SAGE_VAR_
Why I got those ugly _SAGE_VAR_u
and _SAGE_VAR_x
instead of straight u
and x
?
I am using SageMath 8.9.
var('x, t, u')
maxima.eliminate([x == -((t*(1 + 2*t))/(1 + 4*t^5)), u == -((2*t)/(1 + t^2))],[t])
[(17*_SAGE_VAR_u^5-40*_SAGE_VAR_u^4+160*_SAGE_VAR_u^2-128)*_SAGE_VAR_x^2+(4*_SAGE_VAR_u^5+46*_SAGE_VAR_u^4-56*_SAGE_VAR_u^3-64*_SAGE_VAR_u^2+64*_SAGE_VAR_u)*_SAGE_VAR_x+5*_SAGE_VAR_u^5-4*_SAGE_VAR_u^4]
How do I get rid off it? Substituting does not seem to work.
Update:
Eliminating without maxima - why it does not wok?
R.<x,t,u> = PolynomialRing(QQ)
gens = [x == -((t*(1 + 2*t))/(1 + 4*t^5)), u == -((2*t)/(1 + t^2))]
J = R.ideal(gens)
J.elimination_ideal([t])
Ideal (0) of Multivariate Polynomial Ring in x, t, u over Rational Field
While this works:
R.<x,y,z> = PolynomialRing(QQ)
gens = [ x^2 + y^2 + z^2 - 14, x*y + y*z + z*x -11, x*y*z - y^2 -2]
J = R.ideal(gens)
J.elimination_ideal([x,y])
Ideal (z^12 + 2*z^11 - 25*z^10 - 40*z^9 + 329*z^8 - 4*z^7 - 1763*z^6 + 3984*z^5 + 2475*z^4 - 43722*z^3 + 75942*z^2 - 60588*z + 23409) of Multivariate Polynomial Ring in x, y, z over Rational Field