Hello,
I am a newcomer to the SageMath. Basically, I have 100 matrices which have 44 dimensions in python. I want to check if this 100 matrices can generate an infinite group or not. P.S These matrices produced as SU(2) matrices and then were converted 44 matrices.
According to the document of sagemath, I tried to write a code but I am constantly having error:
rom sage.all import *
for i in su4_np:
sage_matrix = np.matrix((i),complex)
sage_matrix = matrix(sage_matrix)
matrix_su4_np.append(sage_matrix)
#F = GL(4, 5)
F = SL(4,5) #CC ,CyclotomicField(10)
gens = matrix_su4_np #this is the matrix which contains all 100 matrices
G = MatrixGroup(F,4,gens)
#G.order
MatrixGroup(F,4,gens).is_finite()
This is the error:
--------------------------------------------------------------------------- MemoryError
Traceback (most recent call last) <ipython-input-218-8f1964d06d6d> in <module> 4 5 gens = matrix_su4_np ----> 6 G = MatrixGroup(F,4,gens) 7 MatrixGroup(F,4,gens).is_finite()/usr/lib/python3/dist-packages/sage/misc/lazy_import.pyx in sage.misc.lazy_import.LazyImport.__call__ (build/cythonized/sage/misc/lazy_import.c:3686)() 351 True 352 """ --> 353 return self.get_object()(args, *kwds) 354 355 def __repr__(self):
/usr/lib/python3/dist-packages/sage/groups/matrix_gps/finitely_generated.py in MatrixGroup(gens, *kwds) 290 if len(gens) == 0: 291 raise ValueError('need at least one generator') --> 292 gens = normalize_square_matrices(gens)
293 if check and any(not g.is_invertible() for g in gens): 294 raise ValueError('each generator must be an invertible matrix')
/usr/lib/python3/dist-packages/sage/groups/matrix_gps/finitely_generated.py in normalize_square_matrices(matrices) 120 continue 121 try: --> 122 m = list(m) 123 except TypeError: 124 gens.append(m)
MemoryError:
Blockquote
I am guessing the error comes because of the F = SL(4,5)
line. However, I do not know what to put instead of that line.
Do we have a function which can check if we have finite group or not just from matrices?
How to solve this error?
I tried quite a lot combination to solve this problem but I always got an error