Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Strange limit of a utility fonction

According to my knowledge (and wikipedia) the utility fonction defined

var('x a b γ')
U_5 = lambda x, a, b, γ: ((1-γ)/γ)*(((a*x)/(1-γ))+b)^γ

is such that

$$\lim_{\gamma\rightarrow 0}U_5(x, 1, b, \gamma) = \log(x)$$

but

limU=lim(U_5(x, 1, b, γ), γ=0) show(LatexExpr(r"\lim_{\gamma\rightarrow 0}U_5(x, 1, b, γ) = "),limU)

returns $\infty$. Strange. Should I commit an error ?

click to hide/show revision 2
None

Strange limit of a utility fonction

According to my knowledge (and wikipedia) the utility fonction defined

var('x a b γ')
U_5 = lambda x, a, b, γ: ((1-γ)/γ)*(((a*x)/(1-γ))+b)^γ

is such that

$$\lim_{\gamma\rightarrow 0}U_5(x, 1, b, \gamma) = \log(x)$$

but

limU=lim(U_5(x,

limU = lim(U_5(x, 1, b, γ), γ=0)
show(LatexExpr(r"\lim_{\gamma\rightarrow 0}U_5(x, 1, b, γ) = "),limU)

"), limU)

returns $\infty$. Strange. Should I commit an error ?