Is there a quick method using Sage to find all representations of a given (possible very large) positive integer B as a sum $x_1^2+....+x_n^2$ of exactly $n$ integers $x_i >0$?
Thanks for any help
1 | initial version |
Is there a quick method using Sage to find all representations of a given (possible very large) positive integer B as a sum $x_1^2+....+x_n^2$ of exactly $n$ integers $x_i >0$?
Thanks for any help
Is there a quick method using Sage to find all representations of a given (possible very large) positive integer B as a sum $x_1^2+....+x_n^2$ of exactly $n$ integers $x_i >0$?>0$, where we can assume that $x_i \leq x_{i+1}$ for all $i$?
Thanks for any help