Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

gram_schmidt orthogonalization process over GF(p) ?

    Let B be a basis of the inner product space V defined on GF(p),
    and  B' be the orthogonal set of B.   My goal is to find B' for a given B.

    I use the following #fnc to get n linear independent vectors over GF(p);

      def gen_basis(p,d):
            V=VectorSpace(GF(p),d)
            B=[]
            while True:
                t=V.random_element()
                if not V.linear_dependence(B + [t]):
                    B.append(t)
            if len(B)==d:
                break
        return B
    B=gen_basis(11,3)

case 1:
m=Matrix(GF(11),b)
m
[ 7  1  7]
[ 5  1  9]
[ 1  7 10]
G,M=m.gram_schmidt() #i get the error as follow
#AttributeError:'sage.rings.finite_rings.integer_mod.IntegerMod_int' object has no attribute 'conjugate' 

case 2:
If i use;
from sage.modules.misc import gram_schmidt kullanılırsam
G,M=gram_schmidt(b)

# in this case orthogonalization works, but in some cases ;
    B'={w1,w2,....wk}
    <wi,w_>= 0 for some i values.
what could be the reason for this?
What does it mean <w_i,w_i> is zero

gram_schmidt orthogonalization process over GF(p) ?

 

Let B be a basis of the inner product space V defined on GF(p), and B' be the orthogonal set of B. My goal is to find B' for a given B. B.

    I use the following #fnc to get n linear independent vectors over GF(p);

      def gen_basis(p,d):
            V=VectorSpace(GF(p),d)
            B=[]
            while True:
                t=V.random_element()
                if not V.linear_dependence(B + [t]):
                    B.append(t)
            if len(B)==d:
                break
        return B
    B=gen_basis(11,3)

case 1:
m=Matrix(GF(11),b)
m
[ 7  1  7]
[ 5  1  9]
[ 1  7 10]
G,M=m.gram_schmidt() #i get the error as follow
#AttributeError:'sage.rings.finite_rings.integer_mod.IntegerMod_int' object has no attribute 'conjugate' 

case 2:
If i use;
from sage.modules.misc import gram_schmidt kullanılırsam
 G,M=gram_schmidt(b)

# in this case orthogonalization works, but in some cases ;
    B'={w1,w2,....wk}
    <wi,w_>= 0 for some i values.
what could be the reason for this?
What does it mean <w_i,w_i> is zero

gram_schmidt orthogonalization process over GF(p) ?

Let B be a basis of the inner product space V defined on GF(p), and B' be the orthogonal set of B. My goal is to find B' for a given B.

     I use the following #fnc to get n linear independent vectors over GF(p);

       def gen_basis(p,d):
             V=VectorSpace(GF(p),d)
             B=[]
             while True:
                 t=V.random_element()
                 if not V.linear_dependence(B + [t]):
                     B.append(t)
             if len(B)==d:
                 break
         return B
     B=gen_basis(11,3)

 case 1:
 m=Matrix(GF(11),b)
 m
 [ 7  1  7]
 [ 5  1  9]
 [ 1  7 10]
 G,M=m.gram_schmidt() #i get the error as follow
 #AttributeError:'sage.rings.finite_rings.integer_mod.IntegerMod_int' object has no attribute 'conjugate' 

 case 2:
 If i use;
 from sage.modules.misc import gram_schmidt 
 G,M=gram_schmidt(b)

 # in this case orthogonalization works, but in some cases ;
     B'={w1,w2,....wk}
     <wi,w_>= 0 for some i values.
 what could be the reason for this?
 What does it mean <w_i,w_i> is zero

gram_schmidt orthogonalization process over GF(p) ?

Let B be a basis of the inner product space V defined on GF(p), and B' be the orthogonal set of B. My goal is to find B' for a given B.

         I use the following #fnc to get n linear independent vectors over GF(p);

           def gen_basis(p,d):
                 V=VectorSpace(GF(p),d)
                 B=[]
                 while True:
                     t=V.random_element()
                     if not V.linear_dependence(B + [t]):
                         B.append(t)
                 if len(B)==d:
                     break
             return B
         B=gen_basis(11,3)

     case 1:
     m=Matrix(GF(11),b)
     m
     [ 7  1  7]
     [ 5  1  9]
     [ 1  7 10]
     G,M=m.gram_schmidt() #i get the error as follow
     #AttributeError:'sage.rings.finite_rings.integer_mod.IntegerMod_int' object has no attribute 'conjugate' 

     case 2:
     If i use;
     from sage.modules.misc import gram_schmidt 
     G,M=gram_schmidt(b)

     # in this case orthogonalization works, but in some cases ;
         B'={w1,w2,....wk}
         <wi,w_>= 0 for some i values.
     what could be the reason for this?
     What does it mean <w_i,w_i> is zero

gram_schmidt orthogonalization process over GF(p) ?

Let B be a basis of the inner product space V defined on GF(p), and B' be the orthogonal set of B. My goal is to find B' for a given B.

 

I use the following #fnc to get n linear independent vectors over GF(p); GF(p);

def gen_basis(p,d):
     V=VectorSpace(GF(p),d)
     B=[]
     while True:
         t=V.random_element()
         if not V.linear_dependence(B + [t]):
             B.append(t)
         if len(B)==d:
                        break
            len(B)==d:break
    return B
 B=gen_basis(11,3)

        case #case 1:
 m=Matrix(GF(11),b)
        m
print(m)
            [ 7  1  7]
         [ 5  1  9]
         [ 1  7 10]
 G,M=m.gram_schmidt() #i get the error as follow
 #AttributeError:'sage.rings.finite_rings.integer_mod.IntegerMod_int' object has no attribute 'conjugate' 

        case #case 2:
        If #If i use;
 from sage.modules.misc import gram_schmidt 
 G,M=gram_schmidt(b)

        # in  '''               
In  this case orthogonalization works, but in some cases ;
 B'={w1,w2,....wk}
 <wi,w_>= 0 for some i values.
        values, what could be the reason for this?
 What does it mean <w_i,w_i> is zero
'''

gram_schmidt orthogonalization process over GF(p) ?

Let B be a basis of the inner product space V defined on GF(p), and B' be the orthogonal set of B. My goal is to find B' for a given B.

I use the following #fnc to get n linear independent vectors over GF(p);

def gen_basis(p,d):
    V=VectorSpace(GF(p),d)
    B=[]
    while True:
        t=V.random_element()
        if not V.linear_dependence(B + [t]):
            B.append(t)
        if len(B)==d:break
    return B
B=gen_basis(11,3)

#case 1:
m=Matrix(GF(11),b)
print(m)
            [ 7  1  7]
            [ 5  1  9]
            [ 1  7 10]
G,M=m.gram_schmidt() #i get the error as follow
#AttributeError:'sage.rings.finite_rings.integer_mod.IntegerMod_int' object has no attribute 'conjugate' 
 #case 2:
#If 2: If i use;
from sage.modules.misc import gram_schmidt 
G,M=gram_schmidt(b)
 '''               
In  this case orthogonalization works, but in some cases ;
B'={w1,w2,....wk}
<wi,w_>= 0 for some i values, what could be the reason for this?
What does it mean <w_i,w_i> is zero
'''