Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Calculating large symbolic determinants is too slow

Calculating large symbolic determinant is too slow

I want to calculate a series of symbolic Hankel matrices. The sizes of the matrices are from 2*2 to 50*50. I found the speed of calculating the determinants is too slow. It took 5 seconds to get the result of a 7*7 matrix, 45 seconds to get the result of an 8*8 matrix, and it was always killed when calculating the 9*9 determinants. How can I make the calculation more efficient?

Here is my full code.

import time
from functools import cache

import sage.libs.ecl
from sympy import simplify


# increase memory limit
sage.libs.ecl.ecl_eval("(ext:set-limit 'ext:heap-size 0)") 


time_table = {}


l = 1
energy = var('E')


def begin(name):
    time_table[name] = time.time()


def end(name):
    print(f'{name}: {time.time() - time_table[name]}')
    del time_table[name]


@cache
def expected_distance(n, l):
    if n <= -2:
        return 0
    if n == -1:
        return -2 * energy
    if n == 0:
        return 1
    return  simplify((
        - 4 * (2 * (n + 1) - 1) * expected_distance(n - 1, l) \
        - n * ((n + 1) * (n - 1) - 4 * l * (l + 1)) * expected_distance(n - 2, l)
        ) / (8 * (n + 1) * energy))


min_rank = 2
max_rank = 50
positive_range_graph = Graphics()
xmin = -0.7
xmax = 0.5
current_ranges = [[xmin, xmax]]
offset = 1


for rank in range(min_rank, max_rank + 1):
    print(f'rank:{rank}')
    begin(f'rank:{rank}')

    begin('generate matrix')
    hankel = matrix.hankel([expected_distance(i + offset, l) for i in range(rank)],
        [expected_distance(i + offset + rank - 1, l) for i in range(1, rank)], SR)
    end('generate matrix')

    begin('calculate det')
    # pretty slow!
    # It is always killed when the matrix size is 9*9
    f = hankel.det()
    end('calculate det')

    begin('simplify')
    f = f.simplify_full()
    # print(f'rank:{rank} {f}' )
    end('simplify')

    begin('solve inequation')
    positive_solutions = solve(f >= 0, energy)
    end('solve inequation')

    begin('plot')
    positive_ranges = []
    for solution in positive_solutions:
        if len(solution) > 2:
            print(f'more than two expression')
        if len(solution) == 1:
            if solution[0].operator() in [operator.le, operator.lt]:
                positive_ranges.append((xmin, solution[0].rhs()))
            elif solution[0].operator() in [operator.ge, operator.gt]:
                positive_ranges.append((solution[0].rhs(), xmax))
            elif solution[0].operator() == operator.eq:
                positive_ranges.append((solution[0].rhs(), solution[0].rhs()))
            else:
                print(f'Cannot recognize operator: {solution[0]}')
        elif len(solution) == 2:
            positive_ranges.append((solution[0].rhs(), solution[1].rhs()))

    hue = (rank - min_rank) / (max_rank - min_rank)
    for positive_range in positive_ranges:
        dots = [(x, rank) for x in positive_range]
        positive_range_graph += line(dots, hue=hue)
        positive_range_graph += points(dots, color='red')
    end('plot')
    end(f'rank:{rank}')
    print()

Calculating large symbolic determinants is too slow

Calculating large symbolic determinant is too slow

I want to calculate a series of symbolic Hankel matrices. The sizes of the matrices are from 2*2 to 50*50. I found the speed of calculating the determinants is too slow. It took 5 seconds to get the result of a 7*7 matrix, 45 seconds to get the result of an 8*8 matrix, and it was always killed when calculating the 9*9 determinants. According to Complexity of calculating the determinant - Mathematics Stack Exchange, the time complexities for calculating determinants can lower to O(n^2.38), however, Sage seems to run in O(n!) from my measurement. How can I make the calculation more efficient?

Here is my full code.

import time
from functools import cache

import sage.libs.ecl
from sympy import simplify


# increase memory limit
sage.libs.ecl.ecl_eval("(ext:set-limit 'ext:heap-size 0)") 


time_table = {}


l = 1
energy = var('E')


def begin(name):
    time_table[name] = time.time()


def end(name):
    print(f'{name}: {time.time() - time_table[name]}')
    del time_table[name]


@cache
def expected_distance(n, l):
    if n <= -2:
        return 0
    if n == -1:
        return -2 * energy
    if n == 0:
        return 1
    return  simplify((
        - 4 * (2 * (n + 1) - 1) * expected_distance(n - 1, l) \
        - n * ((n + 1) * (n - 1) - 4 * l * (l + 1)) * expected_distance(n - 2, l)
        ) / (8 * (n + 1) * energy))


min_rank = 2
max_rank = 50
positive_range_graph = Graphics()
xmin = -0.7
xmax = 0.5
current_ranges = [[xmin, xmax]]
offset = 1


for rank in range(min_rank, max_rank + 1):
    print(f'rank:{rank}')
    begin(f'rank:{rank}')

    begin('generate matrix')
    hankel = matrix.hankel([expected_distance(i + offset, l) for i in range(rank)],
        [expected_distance(i + offset + rank - 1, l) for i in range(1, rank)], SR)
    end('generate matrix')

    begin('calculate det')
    # pretty slow!
    # It is always killed when the matrix size is 9*9
    f = hankel.det()
    end('calculate det')

    begin('simplify')
    f = f.simplify_full()
    # print(f'rank:{rank} {f}' )
    end('simplify')

    begin('solve inequation')
    positive_solutions = solve(f >= 0, energy)
    end('solve inequation')

    begin('plot')
    positive_ranges = []
    for solution in positive_solutions:
        if len(solution) > 2:
            print(f'more than two expression')
        if len(solution) == 1:
            if solution[0].operator() in [operator.le, operator.lt]:
                positive_ranges.append((xmin, solution[0].rhs()))
            elif solution[0].operator() in [operator.ge, operator.gt]:
                positive_ranges.append((solution[0].rhs(), xmax))
            elif solution[0].operator() == operator.eq:
                positive_ranges.append((solution[0].rhs(), solution[0].rhs()))
            else:
                print(f'Cannot recognize operator: {solution[0]}')
        elif len(solution) == 2:
            positive_ranges.append((solution[0].rhs(), solution[1].rhs()))

    hue = (rank - min_rank) / (max_rank - min_rank)
    for positive_range in positive_ranges:
        dots = [(x, rank) for x in positive_range]
        positive_range_graph += line(dots, hue=hue)
        positive_range_graph += points(dots, color='red')
    end('plot')
    end(f'rank:{rank}')
    print()