Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Linear independent matrices

When you have a standard vector space like $\mathbb Q^3$ with some vectors, we can check whether they are linearly independent or not.

v1 = vector(QQ, [0,1,-3])
v2 = vector(QQ, [4,1,0])
V = QQ^3
relations = V.linear_dependence([v1, v2]); relations

Now my question is the following is there a direct method to check whether a couple of matrices are linearly independent in the set of $n\times n $ matrices over $\mathbb R$?

Linear independent matrices

When you have a standard vector space like $\mathbb Q^3$ with some vectors, we can check whether they are linearly independent or not.

v1 = vector(QQ, [0,1,-3])
v2 = vector(QQ, [4,1,0])
V = QQ^3
relations = V.linear_dependence([v1, v2]); relations

Now my question is the following is there a direct method to check whether a couple of matrices are linearly independent in the set of $n\times n $ matrices over $\mathbb R$?R$? More precisely how can I convert

MatrixSpace(CDF,4,4)

to a vector space and get vectors like above?