Let X and Y be two curves defined over Fq and f:X→Y be a separable rational map. Then there is field embedding f∗:→Fq(Y)→Fq(X) defined by $f^(\alpha) = \alpha \circ f.Thedegreeoffisthendefinedtobe[\mathbb{F}_q (X) : f^ (\mathbb{F}_q (Y))].IfItaketwocurvesXandYinsagemathoversome\mathbb{F}_q insagemath,isthereanywaytoautomaticallygetthemap f^*anddegreeoff$?