Let $G$ be a group generated by
"s1", "s2", "s3", "s4", "s12", "s23", "s34", "s123", "s234", "s1234"
with relations
s1^2, s2^2, s3^2, s4^2, s12^2, s23^2, s34^2, s123^2, s234^2, s1234^2, s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4, s1*s3*s1*s3, s2*s4*s2*s4, s1*s4*s1*s4,s1*s12*s2*s12, s4*s34*s3*s34, s3*s123*s23*s12*s3*s123*s23*s12, s123*s12*s4*s34*s4*s12*s2, s23*s1234*s12*s3*s4*s3*s12,s23*s1234*s34*s1*s2*s1*s34
All the above equal to the identity $e$ of $G$.
Is there some function in SageMath which could check if $G$ is finite or not? Thank you very much.