Let $y(z) = 2 \frac{sinh^{-1}(z/(2a)^{1/2})}{(z^2 +2a)^{1/2}}$
where $sinh(z)$ is the sine hyperbolic function.
$$ K(z):=\frac{1}{z(y(z) - y(-z))} \rightarrow 1/2\,{\frac {a}{{z}^{2}}}+1/6-{\frac {{z}^{2}}{90\,a}}+{\frac {{z}^{4} }{378\,{a}^{2}}}-{\frac {23\,{z}^{6}}{28350\,{a}^{3}}}+{\frac {263\,{z }^{8}}{935550\,{a}^{4}}}-{\frac {133787\,{z}^{10}}{1277025750\,{a}^{5} }}+{\frac {157009\,{z}^{12}}{3831077250\,{a}^{6}}}-{\frac {16215071\,{ z}^{14}}{976924698750\,{a}^{7}}}+{\frac {2689453969\,{z}^{16}}{ 389792954801250\,{a}^{8}}}+O \left( {z}^{18} \right) $$
How can I find the linear differential equation in $\frac{\partial}{\partial z }$ with coefficent in the polynomial ring $\mathbb{C}[z]$ that annihilates $K(z)$. I am unable to do it by hand I think some software in sagemath might help.